
Corellium

Video Webinar

Episode #4: Mobile Vulnerabilities Exposed: Reverse Engineering

Full Transcript

Brian Robison:
Good morning, good afternoon. Welcome to our webinar. This is our final webinar of 2022, and
we'd like to thank you all for taking the time out of your busy day to come listen to our third
episode of Mobile Vulnerabilities Exposed. This is our reverse engineering session. I am Brian
Robinson, Chief Evangelist here at Corellium, and I have Steven Smiley, one of our researchers
joining us, and he's going to be doing the bulk of the presentation today. So again, thank you so
much. Happy holidays. For all of those of you who celebrate, we do appreciate you coming out.
There were two other sessions in this track. The first one was on data at rest and the
vulnerabilities that could be posed in there. And then last month in November, we looked at data
in motion and both of those previous webinars are available on demand on our Corellium events
page.

(01:03)
So let's go ahead and get started with today's webinar. A little bit of housekeeping, everybody is
muted. We are in webinar mode, but we do encourage engagement. In fact, we actually have a
few polls for you to participate with today. So we look for you to engage with those. And we also
ask that you please ask questions using the Q&A tool widget. We would like you to see you
participate and get some good questions from you, and we've had some fantastic questions in
the past, so please continue to do so. The webinar is being recorded. We will make it available
shortly after the session, and this presentation does consist of both slides and demonstrations.
Now, some of the demonstrations, the fonts might be very tiny, but that's usually because the
tools we're using may or may not respect screen size and blowing up fonts.

(01:55)
So we will spend a lot of time kind of explaining what we're doing and how we're doing it so that
you can get an understanding of it and perhaps later during the recording you're going to be
able to see that and make better view of that text. So we do apologize for that. First off, I would
like to begin by announcing our new Corellium Contributor Program. It's at
Corellium.com/contributor-program, and this is a way for mobile security professionals to
actually get paid for contributing content to Corellium. And you can see here there's lots of

https://drive.google.com/file/d/1Th1DhUf610hsz0aDBP8h8GOk94AQr8Sg/view?usp=drive_link


things that we'd like to have. We'd like to have research examples, topics in app pen testing, IoT
and R&D. We want demos, blogs, tutorials, even co-presenting with me on these webinars,
things like that. It is a lot of things that are available to you and you can get paid. You can see
here some of the compensation that's available depending on the type of content that you are
working.

(03:04)
So hit that website. If you're interested in creating content, maybe you've got some original
research that you're looking for a way to publish, we can help you do that and we will be happy
to pay you as well for your time and your efforts. So please look into that. We'd love to see you
become a Corellium contributor and be part of the team. So hopefully we see you soon. Next, I'd
like to announce that we have released our Mobile Malware and Mobile Threat Research
Solutions Guide. And really these are, it's the same platform that we use for everything else, but
it focuses on how to use it in the world of doing dynamic analysis on mobile malware and doing
mobile threat research. Now, in the past we have been limited in mobile malware especially
because of the device issue of the time issue and things like that.

(03:58)
And so now we have the ability to actually do this in a virtualized environment. And virtualization
made a huge difference back in the day with x86 malware research because we no longer had
to spend our days restoring systems and doing all these kinds of things after we detonated the
malware. And we can do the same thing for iOS and Android and even other Arm platforms with
our Arm virtualization platform. So I encourage you to hit the website, check out this new
solution brief if you're in this area of security research and how we can here at Corellium really
help you speed up and do things that we've never been able to really do before in the mobile
threat space. So just for those of you who haven't been around Corellium for a while, I just want
to explain very quickly why is security research so hard with mobile?

(04:52)
And there's a lot of reasons. I mean, one, these operating systems aren't designed to be viewed
and introspective at the levels that we normally would, but really it kind of boils down to three
different areas that I'd like to focus on, and that is access to the devices. And that means a wide
range of iOS devices. It means a range of Android devices, both iOS and Android in the same
platform with essentially the same tooling, all those kind of things. But most importantly, we're
looking for specific operating systems on those devices. We're spending a lot of time going out
there and sourcing older devices because they have older operating systems on them that
potentially have easy ways to jailbreak them to get rooted access on them. But basically we're
looking for very specific devices because to do security research, we need access to the
operating system at that root level.

(05:50)
And if we don't have access at that root level, then our visibility into data at risk, data in motion,
things like that is very, very difficult and is severely hampered. So finding specific devices with



operating systems and specific operating systems that can be jailbroken is another reason why
this is so difficult. The third is if you literally take the time that it takes to do all of that kind of
stuff—procuring devices, upgrading them, downgrading them—all these kinds of things that
happen, this is just a time-consuming effort. If you're a global team, you're shipping devices
around the world potentially and you're jailbreaking them when they land somewhere and it's
just a time consuming effort. And that is the third limitation really, because I call it a distraction.
And basically every minute that you spend not doing security research is a minute that is wasted
from advancing your program forward.

(06:50)
So how does Corellium help you solve that? Well, really because we give access to any type of
virtual device that you want, and we are a virtualization platform. We are not an emulation
platform or a simulation. We run true Arm-based operating systems like iOS and Android on
Arm CPUs. We run them directly through our Type 1 Hypervisor and we're the only Type 1
Hypervisor designed to model mobile devices and other IoT Arm-based devices where we're
actually modeling the device itself, not just a generic platform designed to boot a server or
something like that. So you're not going to be running Windows Arm or Linux Arm on our
platform, but you are going to be running very, very specific device types like the iOS and
Android devices. So what really sets us apart is the time savings that this virtualization platform
gives you. As I mentioned earlier, when doing mobile malware and mobile threat research back
in the day, we used to have to physically image these systems and restore them from physical
hard drives.

(08:00)
And you could literally spend an entire day or maybe even a better part of a week restoring a
whole lab back to known good status on the hardware. And so when VMware was introduced
and you could all of a sudden right click and say restore a snapshot, it was so much faster and it
allowed us to scale so much more when doing that mobile research or doing that malware
research for instead. And so what we do with Corellium is we bring that scale and that power of
time savings to the virtual device world. So probably the best feature that I like the best in the
platform is the ability to save a snapshot of a device at a specific point in time and then be able
to restore that device and its OS and everything else back to a very specific point in time that
makes my research go much quicker because I'm no longer having to reboot the device,
potentially reflash it if I've corrupted it somehow and jail break it and do all these kind of things.

(09:04)
I can literally within just a few seconds have my device backup where it was before I began my
testing by using that snapshot feature. So it's a fantastic feature to use and we really look
forward to you being able to use it. Now, there was an issue during the recording yesterday. In
fact, I didn't get the recording started on time, so we missed a few of Steven's early slides. So
I'm going to recreate the slides for you and then we're going to jump over and pick up where
Steven left off. So I do apologize for that, but I try to get you all the content here. So Steven's
going to talk about reverse engineering and the process of disassembling and decompiling a



mobile app to reveal its code, its internal logic and other things like that. So in today's session
we're going to learn about some techniques and topics around reverse engineering.

(10:05)
We're going to look at the iOS and the APK file structure and we're going to look at some basic
reverse engineering principles and techniques for both iOS and Android. And then Steven's
going to show us lots of demos and examples. We're going to use Frida, we're going to use a lot
of different tools that are in this area of static analysis. And really we've focused on dynamic
analysis for the last two webinars because that's where the Corellium platform really shines is in
actually running the code. But we would be remiss if we didn't focus as well on probably one of
the equally important concepts of reverse engineering and looking at the source code itself. So
what is reverse engineering? Essentially reverse engineering is the process of breaking
something down to understand how it works. Mobile apps—basically you need to deconstruct
them, analyze them, observe the compiled apps to understand the functions and things that
they do.

(11:04)
And there's really two types of reverse engineering dynamic, which is again where Corellium
shines because we're actually running the app on a virtual device. You can attach debuggers to
it, you can look at its behavior, you can interact with the application, you can do all that kind of
stuff. And then there's static reverse engineering as well. We're going to look for strings, we're
going to look for URLs, we're going to look for interesting things that are in the app that we
would see potentially while the app is running in dynamic mode, but we can look at it from a
static standpoint, look at the source code. So to do this, we're going to gain a better
understanding of the application along with the inner workings of some of the logic. We're going
to specifically look for hard-coded values that are stored within the application as a lot of things
like AWS hard-coded credentials are leaked in mobile apps especially.

(12:00)
And maybe it's just because the engineering didn't remember to go back and remove it or
obfuscate it, but it is something that's happened a lot. There's recent news stories about it. We
talked a little bit about it back in our September webinar where we introduced the Corellium
platform to y'all, but it's a big problem and a lot of times it's just forgotten, right? The engineer
means to go back and remove these hard-coded credentials, but in the end they didn't get back
to a time or just didn't make the cut or whatever. So being able to find those hard-coded values
in the application is something that we can do with reverse engineering. Also looking for specific
things to exploit in the mobile application. Perhaps there's function calls and things like that that
we can actually spoof some information and get a different result out of it, or we're looking for
the output of that function and we're able to then take that value and do something with it so we
can look at different ways to exploit the application and then we can move into decompilation
versus disassembling.

(13:13)



This is a big discussion area and what is the real difference between decompiling something
versus disassembling something? And on the Android side, it's easier to get back to really good
human-readable code because the decompilers that exist basically translate the compiled
binary low level code into human-readable high level code. And this could be converted back
pretty decently into maybe the original programming language. And depending on the level of
obfuscation in an application, a lot of times a good chunk or if not the vast majority of that
source code can be revealed and back into human-readable format where we can actually see
some of the names of these function calls and things like that. Now this assembly is a little bit
different. Unfortunately it doesn't provide as much level of visibility into the original code and this
is what is utilized for iOS applications. And essentially that machine code gets converted back to
human-readable assembly code. So it's a lot of best-guess type of things to get converted back.
It's way more complicated. And with that, we're going to go ahead and join back into the webinar
that was in progress yesterday. Again, I apologize for screwing up on the recording, but the rest
of the webinar is Steven talking about these concepts. So please enjoy the rest of it. Thank you
very much.

(14:42)
Steven Smiley:
…and a handful of different tools. You could use those to gain information that can be used
within the disassembly tools to kind of make it a little bit easier because it is more difficult. So
we'll talk about the Android file structure. So the Android package here is the APK contains all
the data in the form of a zipped alvik executable file. Now you've got, when you unzip an APK
file, whether you use APK tool, which is a great tool to do that or whether you just unzip it, there
is a handful of folders in there.

(15:25)
So the META-INF folder, it just contains verification information that's generated when the app is
signed. So you see some signing certificates there. If you're looking at Android vulnerabilities,
like different signing issues, you can look in there for the certificates and see them. There's a lot
of other tools that pull up that information as well that you don't actually have to manually go in
and do that. If you look at the assets folder, it just really contains assets. The developers bundle
with the application. That can be images, videos, documents. Sometimes it's good to take a look
at just to see what's there from the developer perspective. Maybe they stored something they
shouldn't, it doesn't happen as often. The Lib directory just contains native libraries with the
compiled code for different device architectures. So you can go through there, look at some
different libraries. There are some different files. I've seen use cases where actually sensitive
information or keys actually get stored in the libraries. A little strange, but it does happen.

(16:19)
And then you got the Res, which is just the resources that contain predefined application
resources. It could be XML files that define network connections, interface layout, a handful of
things. Really good folder to go take a look at just for some generic information and potential
information relating to your network configurations, which we talked about in the previous



webinar. You have the Android manifest, which I'm sure everyone is fairly familiar with. It's just a
manifest that contains the app’s package name, activities, resources, permissions, things like
that. So there's a lot of information in there. Obviously a good place to start in any assessment
is to look at that. And then you have the Classes.dex, which contains all the Java classes in a
.dex file format. For iOS, much simpler, there's not a whole lot of information, but iOS iPA files
are just a zip archive. They can be renamed.

(17:10)
I've seen some people do that. Just rename it to a zip and then unzip it or you can just
unpackage it with any really unzipped tool, Mac, Windows, wherever you want to. But within
there you have the App Binary itself, which is the executable file, that compiled unreadable
source code. So that's what's used as part of disassembly. You could use that actual binary to
be able to load it up into a disassembler or DRE or whatever tool. You want to be able to take a
deeper look. You have the info.plist, which has the configuration information such as bundle ID,
the version number network configurations, a handful of information and potentially sensitive
information if your application's coded wrong. You also have the framework folder, which is a list
of dynamic libraries for your application. And then your Embedded.mobileprovision, which is
your certificate for application signing, which is also the file that's going to block you if you are
incorrectly signing or incorrectly installing on a certain device.

(18:09)
So we do have ways around that. If you check out our previous blog posts and webinar and take
a look, we really talk a lot about the Embedded.mobileprovision file tools for reverse
engineering. And by no means is this an exhaustive list. There are other options, there's other
tools depending on what people like to do. For Android, there's a lot less because there are
some really good tools. JADX being one, which is just a Dex to Java, decompiler. APKTool, you
can decode and rebuild APK files. There are things like DEXtoJar and JD-GUI, things like that.
Those are kind of outdated as JADX came into play. That one's just kind of better for the most
part. For iOS, you have things like Otool, NM, you have Strings, Hopper, there's a bunch of
Disassembles, IDA Pro, Radare, Ghidra, BinaryNinja, a handful of options. We have a quick poll
actually I believe Brian, just around the tools and what kind of people are using currently. I have
a feeling the Android one, I know the results are almost unanimous. We'll put the poll up really
quickly. I have a feeling this is going to be pretty unanimous. The iOS one's going to be more
interesting I think. So we'll just give 2 seconds.

(19:28)
Brian Robison: If you're using other tools, please send us the name of that tool in the Q&A
widget if you would, because what we'd like to do is potentially put together webinars on these
tools and their usage and things like that in the future. So if your answer is other, please do
send us that in the Q&A and we can look at adding. We have a lot of guides and things like that
on our support site and would like to always add more.

(20:01)



Steven Smiley: Yeah, lots of stuff coming and part of these poll questions, they're not just for
this webinar to get information. It’s to get information just around the industry and what people
are trying to use so that we can guide some content and some future creation to more advanced
webinars and blog creation and things like that. So for Android, it looks like the majority, and you
can put up the next poll while I talk about this, but the majority was on JADX. There was some
on jd-gui and Dex2jar that is an older tool. Depending on your research or if you're going online,
you may see some references to Dex2jar and JD-GUIi. JADX is much quicker. You'll see some
demos we're going to go through that just show kind of how quick it is and how really good it is
for that tool. But yeah, good to see people are still mixing it up a little bit.

(20:48)
So yeah, we're going to do the iOS reverse engineering question. We're just talking about what
your favorite disassembler is. There's so many different options. This kind of depends if you
have a license, if you're a corporate customer, things like that. There's a handful of people who
use different things. It looks like iOS one came back, it's pretty split. Hopper is up there, just
barely ahead. Ghidra obviously being a free option is quite up there, which I expected. IDA Pro
still has quite a few votes. IDA Pro being more of an enterprise level tool, you don't see,
depends on the consulting level, but IDA Pro can be tough to get your hands on. So I'm not
surprised to see Ghidra and Hopper towards the top, but we're going to kind of look at Hopper
really quickly today. We're not going to spend a whole lot of time on that, but we do have a quick
demo on that.

(21:38)
Brian Robison: And one of the folks sent into the Q&A when they answer others–

(21:43)
Steven Smiley: R2, yeah, we should have put that in the list. That was an oversight on my side.

(21:48)
Brian Robison: And VS Code, Visual Studio Code with the APKLab plugin. That's a cool one.
And also just so that there is also a Corellium tool with VS Code that allows you to do things like
start and stop devices and other things like that directly from VS Code. One of our researchers
wrote that. So that's actually kind of a pretty cool integration of that tool.

(22:13)
Steven Smiley: Yeah, yeah, definitely. OK, so we'll get into some demos. We got about 25
minutes left so we got some demos as well to go through both for Android and iOS. So for the
first one we'll kind of look at the hard-coded value just being stored locally. So for this demo
we're going to be using the injured Android, which is available on GitHub. There's the link. If you
haven't tried it before, feel free to try it. It's a really good tool, especially for Android. There is a
ton of options for vulnerable apps. So this by no means is the go-to. There's a lot of different
options, a lot of different use cases. This one has a good one for reverse engineering, you get



this code. So it just felt like a good option for that. So I'm actually going to load up my Corellium
Android device.

(22:59)
I have the injured Android actually running here and congrats I got the flag, but let me just kill
that. So this FlagOneLoginActivity, you enter a flag and submit, nobody knows what it is. By
default you would kind of take a look that's obviously incorrect so you don't know what it is. How
are you going to find that information? Well, you can use some reverse engineering to kind of
take a look. There's probably some other ways to also look for this, but what we're actually
going to do is I'm going to load JADX right here so we can kind of all take a look together.

(23:40)
That's not it. Oh, one sec. I'm in the wrong directory and then we'll load injured Android here. So
I'm going to load this up in JADX. I'm going to try to zoom in as much as I can on most screens
so that we can kind see. If you guys have any questions, if that’s something you can't see,
especially when we get into the Hopper, just feel free to put it in the Q&A. We're more than
happy to answer that or elaborate on anything like that. So for this one, you see all the code
here. There is some obfuscation, you see A, B, C, D. Typically we're going to go into the actual
application itself to look at that code. So we look at the injured Android and there's a bunch of
stuff in here. There is some obfuscation, A, E, F, but you do see a couple flags here.

(24:27)
So Flag18Activity, FlagFive, FlagNine, FlagOne. So if you actually go back here, we're looking
at FlagOneLoginActivity, right? So we'll try to look and see if there's anything associated with
that. You actually look here, there's a class called FlagOneLoginActivity. So you can actually go
take a look and then you just look through the code. So in this case you obviously see a
reference right here. The flag is right under your nose and you look through some of the stuff
they're doing and then you just kind of look down. There's actually right here, they actually call it
out as FlagOne. Now there is a couple other ways to do it. That's a super easy way to look for it.
It might not always be that easy to know which class it is.

(25:16)
The search functionality within JADX is pretty good. So you can obviously look…let's see if
that's going to process quickly. If not, that's OK. It might actually freeze. OK, there we go. Sorry,
apologies for that. That took two seconds. That was having some weird issues there. But within
the search functionality you can search for a number of things and this should be used kind of in
every pen test depending on what you're searching for. In this case I search for the word flag.
You can see a bunch of stuff here, a bunch of information, there's a hundred or more. So there's
lots of things to go for. I'm trying to think what else was in there. FlagOneLoginActivity. So
normally in a pen test you kind of look, you could look for things like secret or SecretKeySpec is
really good, if you're looking for crypto. You can look for things like that where you can get a lot
of information just about how the application is processing, how the application is doing crypto,



how it's doing decryption, anything like that. And JADX is having all sorts of issues today where
it's just continuing to fail.

(26:28)
That's okay, that demo's done anyway, but then you just enter the flag. So the same way you
found it, you just enter it in here, hit submit and it will solve that flag. Same as you see here:
congrats you found the flag. Android repackaging app repackaging. So as you're doing reverse
engineering, one thing that you could do, part of iOS or Android, but a lot of times it's done kind
of more in Android, is you can actually repackage the application and modify the code. So
there's a handful of reasons why you'd want to do that. It could be bypassing a security control
or certificate pinning, root detection, things like that. It could be patching a certain functionality to
pop out, maybe a password, a window. There's a handful of reasons. Not a lot of applications do
that anymore, but there are a lot of use cases where you're trying to bypass potential security
controls or look for additional information. So one good example of that, if you use the
UnCrackable application, they actually have four levels. We're only going to go over one of them
today just in terms of time, but go check it out if you guys want to challenge to solve the rest of
them. But we'll go over level one, which if you look at it, actually I have it here.

(27:46)
If you launch the application right away, it's going to have root detection, which is unacceptable.
It says the app is now going to exit. Now there's a couple ways to bypass that. One, you could
use a Frida script. Now if you use a Frida script like that where it checks on launch, if you do
that through Corellium, you'll actually need to either do it outside of Corellium, which is one
option with your Corellium device. It's totally possible or you can actually use the console
directly in your device here. If you actually go to this console, Frida is actually running here. So
you can actually run Frida right through here.

(28:20)
Sorry, I'm just waiting to get to the actual command line. But yeah, you can run Frida. Frida tools
are all right here. So you have Frida, FridaTrace, everything is all running right here as well. So
you can actually upload a script to your device and just run it this way if it checks on launch
because this actual Frida console, you need to actually hook the process. If you see here, if I
launch this, it's already too late, it's already checked for root detection. So if I hook the process,
it's not going to be able to actually bypass that. So that is one option. Or you can manually
modify the code as I mentioned, right? So you can decompile the application, modify the code,
resign it, and then install the application. So if you look at this one here, I'll actually decompile
the Android application, which is using APKTool and then the d flag and then just decompile the
application. It basically unzips it.

(29:13)
You can go into the directories and then you just find the root detection code. So similar to what
I mentioned in the last demo, if you use JADX you could search for various things. Now if you're
looking for obviously root detection, you're going to look for things like root or /sbin or



/exposed.su, different things that potentially you would see as they're detecting root detection.
And then you would just find that level code. Now once you find that code, you can actually go
into the Smali code into the directories and give a couple options. You can either manually edit
that if you have knowledge of small code, we could change it to be true if it shouldn't be or be
false in the case that it actually found something. You could do that. You could change out the
classes they're looking for, the binaries they're looking for to different names that they aren't
going to find you could actually delete the code.

(30:10)
That kind of depends on how intertwined it is with the rest of the application. Maybe deleting a
part might not work because if it's intertwined with the rest of the application you might get a
bunch of errors. So there is a whole lot of trial and error with that. If you actually look in the top
right here on this slide, you'll see this is the code in the main activity where it was actually doing
the root detection and there was additional code beyond this. So you can actually go take a look
at this if you have the binary and then you just resign the Android application so that we can
install it. So if you're resigning APKTool to rebuild the APK, there's the command APKTool and
then the B-flag -F-D just so that we have a directory.

(30:51)
And then just call it the binary. The new APK automatically gets generated in the directory of the
decompile folder you already had. And then you just, we need to re-assign it. You just generate
a local Keystore. This is just using my name. So Android signing Keystore, you can change that
to whatever you want. There's an alias, you could change that to anything you want and you can
change the keysize. I just use 2048 just as a quick example and this will work. And then you
would sign the APK with that Keystore you created. So you are calling that Android Keystore
again. So make sure if you change the name, you're changing it here as well and the alias. And
then you would just use jarsigner to verify the APK. And then lastly you just use Zipalign for
optimal loading, make sure everything's going to work on every device and then you would just
install it. So if you actually look, I won't go just for time purposes, I won't go through all that. All
the commands are there. So you can look back at the recording and grab any of that if you need
it. But if you actually look here, I have a different device here where I've actually patched it out
already and you can see there's no route protection.

(32:04)
So beyond that, there is now a secret string you need to solve, which gets us kind of into the
Frida conversation of things. So if you actually look, this is the code that came out of JADX as
you see from the screenshot. So SecretKeySpec as I mentioned earlier, really good opportunity
if you're doing reverse engineering for Android, look for things like SecretKeySpec. A lot of
crypto is handled through that and it can kind of guide you right away to classes that pertain to
any sort of decryption. So that could help you obviously look for potential hardcoded IVs,
potential hardcoded data or just understand how they're doing decryption and then be able to
write a script like this. So here's just a quick script that actually finds the class. It calls the
function, it converts the return byte array to ASCII and then it leaks it to the log.



(32:59)
So we can actually load that up here. So if we actually go to Frida, select the process, now we
can actually, like I mentioned before, with the root detection being checked right away, we
weren't able to hook it, but now we can now that it's bypassed. So we hook onto that. I have a
script here running which the script's available in the slides as well, so you guys can get that as
well. But you can see the script was loaded. If I put a secret in here, anything I want, if I put test
for example, you're going to see it returns “I want to believe…” which is the answer in here. And
that will actually solve that. iOS reverse engineering. We'll just quickly talk about this, we'll just
use the iGoat-Swift IPA to kind of look for some hardcoded secrets as well. When it comes to
iOS reverse engineering, there's so much to do and you get into disassembly, it kind of gets
super complicated.

(33:58)
So we won't dive a whole lot into that. Just to talk about some generic methods for that and
what you can do. So here's an IPA you can go download if you want some practice, you want to
go take a look. Now if you actually look here, so one thing you can do is just run the strings
application. You can also run Otool and things like that. There's a couple other tools to gain
some basic information, which you always should be doing prior to putting it in a Hopper or
Ghidra or something like that. The more information you can get, the more insight you can get
into the application, really guides how you use Hopper and these other tools to gain even more
information. You know what to search for, you know what to look for, things like that.

(34:39)
So if we actually, I have iGoat actually running here. I have a folder, so I actually already
unzipped all this, but so you just go into the folder, into the app folder itself. You can see the
binary is right here, iGoat-Swift. So then you can run strings on and then look for things
like—and this could be anything you can search for in a normal binary. This could be not just
secret, but things like password, any sort of crypto thing you're looking for, any key search terms
you have, anything like that you could search for. This is just generally to get an understanding
of the application. You can see here there's something called “You found the secret!!” So that's
obviously a really key thing. We want to look for this application. This could be vastly different
for any other application, but in this case what you would do is you can actually open this up in
Hopper or Ghidra, whatever your favorite tool is, really doesn't matter.

(35:38)
And by the way, this is going to be hard to see, so I'll try to explain this the best I can to try to
avoid this. But it's processing everything right now with the binary. Looking at everything up
here, you have a couple of different options to look for, label strings, things like that. So one
thing you can look for now that you have some insight using things like strings or Otool or
whatever the tools you're using outside of the disassembler, you could look for things like secret.
And then you see “You found the secret here!!” which is I know probably hard to see again, but it
does say “You found the secret!!” and that'll bring you down here. You can also look for



references. So in this case, I'm going to look for a reference to the “You found a secret!!” There's
one I can go to that.

(36:26)
You can see “Congratulations. You found a secret!!” That could be extremely hard to read. You
can also switch to things like pseudo code where you can actually read it a little bit better and
get a better understanding. So you can see, well you probably can't see, but it does say
“Congratulations, you found the secret!!” There is some information here. So this is
just—generally Hopper is a really advanced tool. Same with Ghidra or any of these
Disassembles. There is a lot of complicated nature to it in terms of actually reading the code,
understanding what's there. But the goal of reverse engineering with iOS or even Android is just
to gain as much information about the application as you can. That's why using things like
Strings or Otool or any of these other ones like NM or there's a handful of different tools that you
could use to gain an insight and then use that information and what's being done, what crypto
are they using, are they using any secrets, are they using things called password, whatever.
And then use that information to search for things in here to get an understanding of where it
could be. And then start looking through the code to gain more information. And this could lead
you to potentially be able to build out additional scripts, potentially Frida scripts, use R2 to patch
out the binary if you need to. There's a handful of other more advanced things you're going to
move on to from here. But this is kind of just obviously the start.

(37:55)
I'm not going to say that that was the demo. So we'll talk about Frida really quickly. Frida is
obviously a dynamic instrumentation toolkit for reverse engineering security researchers and
mobile pen testers. So why should you use Frida? What can be done? You can observe and
trace application functionality using Frida-trace. You can execute code in the application context,
explore the application internals without the source code and modify the behavior of an
application at runtime. You saw some of that as we did the Frida demo with the UnCrackable.
So how does it work? Well, on jailbroken root devices, they use Frida injected mode, which the
Frida servers run on the devices. You can interact via USB or the TCPIP stack, but Frida injects
a shared library into the target process. And then JavaScript is sent from the Frida tool and then
executed in the context of the process.

(38:51)
So there's a handful of tools beyond this that leverage the Frida API, things like Frida-ps, which
you can list processes on your device as well, which by the way, you can get a lot of that
information right at a Corellium just on the apps tab. But Frida-ps is a really good opportunity to
gain that information. If you need process IDs, package names, just the name of the application
running, you can use things like Frida-trace, which can dynamically trace function and method
calls, which we'll talk about quickly in a second. And then Frida CLI, which you can run
JavaScript within a target process. So within Corellium we have all of this, but the Frida
command line and the ability to write a script and run it really quickly against an application a
second to none, you won't find anything else as quick or as stable to be able to do all that stuff.



(39:40)
And then obviously with development experience, you can write your own tools, scripts,
anything you need to with Frida because everything is open, so Frida-trace, it can be used
heavily as another opportunity to gain additional insight to reverse engineering or to potentially
leverage yourself to perform additional attacks. So, Frida-trace is just a component used for
dynamically tracing application function calls. So when Frida-trace is started, it'll automatically
enumerate the functions for that given module. Now here are a couple examples just as some
generic information. This isn't exhaustive by any means. You can use Frida-trace to do a ton of
different things. It can be very customized depending on your application. But here are just
some generic things you could do. If you're looking for the network, you look for HTTP calls, you
look at the local file system, how is your application actually working with the local file system,
the NSFileManager, things like libcommonCrypto look for things like that for crypto functionality.
But again, there's tons of other opportunities as well. And just as a quick example, the
iGoat-Swift application, it actually has a secure messaging system which can use Frida-trace to
gain information. So if you actually look, let me go to that iOS device. So this is the iGpat
application, it's already running. They have this, sorry, lemme just start this as well.

(41:16)
One second. I need to connect to the VPN. OK, so that means a cloud instance as well. But
they have what they call a secure messaging, obviously not secure because it is an insecure
application. And the point of this is to kind of target this, but if you put some fake information in
here, random message doesn't matter. And send this, it's actually being sent over the open URL
and you can actually, let me see if this,—sorry while I do this, Brian, there was a question too.
Can you read it?

Brian Robison: Yeah. Does the Corellium Frida feature depend on the Frida developers when
a new iOS version is released? Do we need to wait for the devs to update Frida to work with
new iOS versions?

Steven Smiley: So we just—do you want to answer this or do you want me to answer this?

(42:14)
Brian Robison: Go ahead.

Steven Smiley: Yeah, so we just updated. So for our devices we're on what, 16.0.2 I think?

Brian Robison: Yeah, I believe.

(42:21)
Steven Smiley:
I believe so. Yeah, so we're pretty new. So we're not the absolute latest. We don't stick with the
absolute latest obviously in terms of there could be bugs, there could be some issues with that.



But we do try to keep up as best possible to the latest releases. So we obviously fully test that,
make sure everything's working, make sure everything's running, and then we make those
migrations to the newer versions to keep up. I think publicly right now they're a little bit higher. I'll
actually check my free version. I actually just updated mine I think to the latest, but so Corellium
will always be a little bit back, but in terms of the major version, they should always be at the
latest as those releases come out. And there shouldn't be any issues with that. But if you are
having any concerns about the Frida version that's being run on the device, you can actually
use your own Frida like I'm doing now.

(43:13):
You don't actually necessarily need to use the console; it's directly in the Corellium virtualized
device. You could take that outside and use USBFlux for iOS or use it for Android and be able to
use your own Frida and your own Frida version. So that's a possibility as well if you have
compatibility issues with other tools or anything like that. So quickly here, just while we were
answering that question, I just ran. So what I'm actually doing, I'm using USBFlux to connect to
the virtualized device, which is this device running. I did a Frida-trace on this open URL for the
iGoat-Swift application. It had said it was tracing one function and then I actually went ahead
and actually sent this message. And then you can see that the application is actually using that.
Here are some pointers. So you can use this information and Frida-trace to gain information
about what the application is doing, where it is doing these things, and then take that
information to your other tools to be able to do more advanced analysis.

(44:15)
So you're going to take it into Hopper or Ghidra and start looking at these locations and start
seeing what is the code doing, potentially build something else, build an additional script. But
you do have that functionality. And this can be done right in the virtualized device as well
through the console. I just already had it set up right here as well. And Frida, lemme see right
now because I'm on 16.0.8 and this one is on 16.0.2, I believe 16.0.1. So it's a couple minor
versions back, but for the most part it's going to stay pretty up to date. And this should probably
update fairly soon I would imagine. And that's kind of it for me. We'll leave it open. I think we
have three minutes. We can leave it open to questions. If anybody missed something, anything,
we'll open the floor.

(45:12)
Brian Robison: Yeah, if there's any questions, feel free to go ahead and enter them in the Q&A.
If not, feel free to bail off and get back to your day. We'll just go ahead and hang out for a few
more seconds. But just wanted to say thank you very much for everybody attending. Again,
happy holidays for all of you. Hopefully the end of your year is going well and we will see you on
the other side in 2023. I hope everybody has a great rest of your day, rest of your week, and
finish out the year strong. Thank you everybody, have a great day.




