
MATRIX Report

Test ID 1899e005-2413-4b38-ad08-3474a481d5d7

Test Duration 10m 31s

Test Date August 6th, 2024

Created By Corellium

App Name Cafe

App ID com.corellium.cafe

App Version 1.0

Device Model Generic Android

Device OS 14.0.0

Device Rooted? Yes

Corellium Environment enterprise.corellium.com

Corellium Version 6.4.1-22730

18
Failed

0
Artifact

0
Error

Results

62
Passed

Name Category Status

Application Contains Hardcoded URLs AUTH-2 Failed

Insecure Biometric Implementation AUTH-2 Passed

MinSDK Targets Vulnerable Android Versions CODE-1 Failed

Insecure libpng Library Version CODE-2 Passed

Insecure libjpeg-turbo Library Version CODE-2 Passed

Insecure OkHTTP Library Version CODE-2 Passed

Insecure Joda Library Identified CODE-2 Passed

Application Utilizes Stack Canaries CODE-2 Passed

Safe Browsing Not Enabled in WebViews CODE-2 Passed

Application Utilizes Position Independent Code CODE-2 Passed

Application Utilizing Insecure Cryptography CRYPTO-1 Failed

Application Utilizing Insecure Symmetric Encryption Modes CRYPTO-1 Failed

Insecure Random Number Generation CRYPTO-1 Failed

Application Contains Hardcoded SQLCipher Key CRYPTO-2 Failed

Application Contains Hardcoded API Keys CRYPTO-2 Passed

Application Allows Insecure Network Connections NETWORK-1 Failed

HTTP Cleartext Transmission of Device IMEI NETWORK-1 Passed

HTTP Cleartext Transmission of GPS Longitude Coordinates NETWORK-1 Passed

HTTP Cleartext Transmission of GPS Latitude Coordinates NETWORK-1 Passed

HTTP Cleartext Transmission of Sensitive Data NETWORK-1 Passed

HTTP Cleartext Transmission of DNS Address NETWORK-1 Passed

HTTP Cleartext Transmission of Build Fingerprint NETWORK-1 Passed

HTTP Cleartext Transmission of Bluetooth MAC Address NETWORK-1 Passed

HTTP Cleartext Transmission of Device Android ID NETWORK-1 Passed

HTTPS Traffic URL Contains WiFi MAC Address NETWORK-1 Passed

HTTPS Traffic URL Contains Device IMEI NETWORK-1 Passed

Application VPN Opts out of Always-On Feature NETWORK-1 Passed

HTTPS Traffic URL Contains Device's GPS Longitude NETWORK-1 Passed

HTTPS Traffic URL Contains Device's GPS Latitude NETWORK-1 Passed

HTTPS Traffic URL Contains Sensitive Data NETWORK-1 Passed

HTTPS Traffic URL Contains DNS Address NETWORK-1 Passed

Checks

HTTPS Traffic URL Contains Build Fingerprint NETWORK-1 Passed

HTTPS Traffic URL Contains Bluetooth MAC Address NETWORK-1 Passed

HTTPS Traffic URL Contains Android ID NETWORK-1 Passed

Insecure Security Provider NETWORK-1 Passed

Insecure TLS configuration NETWORK-1 Passed

Cookie missing 'Secure' flag NETWORK-1 Passed

Application Target SDK Allows for Insecure Network Configurati… NETWORK-1 Passed

Cookie missing 'httpOnly' flag NETWORK-1 Passed

Application Contains Heartbleed Vulnerable OpenSSL Version NETWORK-1 Passed

Application Contains Change Cipher Spec Injection Vulnerable … NETWORK-1 Passed

Application Contains Insecure HTTP Traffic NETWORK-1 Passed

HTTP Cleartext Transmission of WiFi MAC Address NETWORK-1 Passed

Application Manifest Contains Unverified Deep Links PLATFORM-1 Passed

Application Utilizes Intents Vulnerable to Redirection PLATFORM-1 Failed

Application Utilizes Broadcast Receivers Without Permissions PLATFORM-1 Passed

Application Utilizes Potentially Dangerous Permissions PLATFORM-1 Failed

Application Contains Debuggable WebViews PLATFORM-2 Failed

Application Utilizes Insecure JavaScript Interface PLATFORM-2 Failed

Application Contains WebViews with Javascript Enabled PLATFORM-2 Failed

Application is Vulnerable to Task Hijacking PLATFORM-3 Passed

Janus Exploitation Possible Due to Current Minimum SDK RESILIENCE-2 Failed

Application Utilizes a Weak Signing Key RESILIENCE-2 Passed

Application Utilizes a Weak Signing Scheme RESILIENCE-2 Passed

Application Contains Debug Library RESILIENCE-3 Failed

Application Enables Debugging within the Android Manifest RESILIENCE-4 Failed

Local Data Exposure: DNS Address Stored Insecurely STORAGE-1 Passed

Local Data Exposure: GPS Longitude Stored Insecurely STORAGE-1 Passed

Local Data Exposure: GPS Latitude Stored Insecurely STORAGE-1 Passed

Local Data Exposure: Sensitive Values Stored Insecurely on De… STORAGE-1 Failed

Local Data Exposure: Global Write Permissions STORAGE-1 Passed

Local Data Exposure: Global Read Permissions STORAGE-1 Passed

Local Data Exposure: Bluetooth MAC Address Stored Insecurely STORAGE-1 Passed

Local Data Exposure: Insecure Hardcoded API Keys STORAGE-1 Passed

Local Data Exposure: Insecure Hardcoded Passwords STORAGE-1 Passed

Local Data Exposure: WiFi MAC Address Stored Insecurely STORAGE-1 Passed

Local Data Exposure: WiFi IP Address Stored Insecurely STORAGE-1 Passed

Local Data Exposure: Device IMEI Stored Insecurely STORAGE-1 Passed

Local Data Exposure: Android ID Stored Insecurely STORAGE-1 Passed

Local Data Exposure: WiFi IP Address Logged Insecurely STORAGE-2 Passed

Local Data Exposure: Bluetooth MAC Address Logged Insecurely STORAGE-2 Passed

Local Data Exposure: Sensitive Values Stored in Memory STORAGE-2 Failed

Local Data Exposure: Device IMEI Logged Insecurely STORAGE-2 Passed

Local Data Exposure: Application Backups Enabled STORAGE-2 Failed

Local Data Exposure: Device Fingerprint Logged Insecurely STORAGE-2 Passed

Local Data Exposure: WiFi MAC Address Logged Insecurely STORAGE-2 Passed

Local Data Exposure: GPS Longitude Logged Insecurely STORAGE-2 Passed

Local Data Exposure: GPS Latitude Logged Insecurely STORAGE-2 Passed

Local Data Exposure: Sensitive Data Logged Insecurely STORAGE-2 Passed

Local Data Exposure: DNS Address Logged Insecurely STORAGE-2 Passed

Details

AUTH
Authentication and authorization are essential components of most mobile apps,

especially those that connect to a remote service. These mechanisms provide an added

layer of security and help prevent unauthorized access to sensitive user data. Although

the enforcement of these mechanisms must be on the remote endpoint, it is equally

important for the app to follow relevant best practices to ensure the secure use of the

involved protocols. Mobile apps often use different forms of authentication, such as

biometrics, PIN, or multi-factor authentication code generators, to validate user identity.

These mechanisms must be implemented correctly to ensure their effectiveness in

preventing unauthorized access. Additionally, some apps may rely solely on local app

authentication and may not have a remote endpoint. In such cases, it is critical to ensure

that local authentication mechanisms are secure and implemented following industry

best practices. The controls in this category aim to ensure that the app implements

authentication and authorization mechanisms securely, protecting sensitive user

information and preventing unauthorized access. It is important to note that the security

of the remote endpoint should also be validated using industry standards such as the

OWASP Application Security Verification Standard (ASVS).

Many apps allow users to authenticate via biometrics or a local PIN code.

These authentication mechanisms need to be correctly implemented.

Additionally, some apps might not have a remote endpoint, and rely fully on

local app authentication.

Status

Failed

Severity

Info

Impact

Hardcoded URLs can provide attackers with access to sensitive information

including detailed information regarding the application backend

infrastructure which can be leveraged to conduct a more in-depth targeted

attack.

Remediation

An application codebase and required resources should not contain

hardcoded URLs. If your application requires a URL, it should be retrieved

AUTH-2

The app performs local authentication securely

according to the platform best practices.

A2

Application Contains Hardcoded URLs

This test evaluates how the application manages hardcoded URLs within its

codebase and application resources. Hardcoded URLs can contain sensitive

information regarding backend infrastructure, sensitive information, access

tokens or provide additional insight for attackers to conduct targeted attacks.

from the application backend.

Evidence

File: /data/local/tmp/artifacts/output/sources/com/corellium/cafe/ui/activitie

s/WebViewActivity.java

https://www.corellium.com/blog

File: /data/local/tmp/artifacts/output/sources/com/corellium/cafe/crypto/Ins

ecureCrypto.java

https://www.example.com

File: /data/local/tmp/artifacts/output/sources/com/corellium/cafe/functions/

FunctionsKt$sendPost$1.java

https://www.corellium.com/

Status

Passed

Severity

Medium

Impact

If the biometric implementation for your application is insecure, it could lead

to a wide range of security concerns. These may include unauthorized access

to the application, exposure of sensitive user data, and potential misuse of

biometric information.

Insecure Biometric Implementation

The application uses biometric authentication, but the implementation does

not fully adhere to secure coding best practices. This could result in potential

security vulnerability that can be exploited by malicious actors to gain

unauthorized access to your application.

Remediation

Review the implementation of biometric authentication to ensure it follows

best security practices. Ensure that secure cryptographic methods are

employed when handling biometric data. It is recommended to dynamically

test the application to confirm the security of the biometric implementation.

Refer to the official Android security guidelines for biometric authentication to

implement necessary safeguards.

CODE
Mobile apps have many data entry points, including the UI, IPC, network, and file

system, which might receive data that has been inadvertently modified by untrusted

actors. By treating this data as untrusted input and properly verifying and sanitizing it

before use, developers can prevent classical injection attacks, such as SQL injection,

XSS, or insecure deserialization. However, other common coding vulnerabilities, such as

memory corruption flaws, are hard to detect in penetration testing but easy to prevent

with secure architecture and coding practices. Developers should follow best practices

such as the OWASP Software Assurance Maturity Model (SAMM) and NIST.SP.800-218

Secure Software Development Framework (SSDF) to avoid introducing these flaws in the

first place. This category covers coding vulnerabilities that arise from external sources

such as app data entry points, the OS, and third-party software components.

Developers should verify and sanitize all incoming data to prevent injection attacks and

bypass of security checks. They should also enforce app updates and ensure that the

app runs up-to-date platforms to protect users from known vulnerabilities.

Every release of the mobile OS includes security patches and new security

features. By supporting older versions, apps stay vulnerable to well-known

threats. This control ensures that the app is running on an up-to-date

platform version so that users have the latest security protections.

Status

Failed

Severity

Low

CODE-1

The app requires an up-to-date platform version.

C1

MinSDK Targets Vulnerable Android Versions

This application is able to be installed on devices running Android 7.1 (API

Level 25) or earlier. Applications with a 'minSdkVersion' lower than 26 will not

have crucial security and privacy features applied to improve the overall

security of your application.

Impact

Running your application on outdated versions of Android can expose users

to a wide variety of vulnerabilities including outdated versions of TLS.

Remediation

Ensure the application's minimum SDK (minSdkVersion) is set to a value of at

least 26.

Evidence

File: /data/local/tmp/artifacts/output/resources/AndroidManifest.xml

android:minSdkVersion=23

Sometimes critical vulnerabilities are discovered in the app when it is already

in production. This control ensures that there is a mechanism to force the

users to update the app before they can continue using it.

Status

Passed

Severity

Low

Impact

CODE-2

The app has a mechanism for enforcing app

updates.

C2

Insecure libpng Library Version

The current version of libpng used by your application is vulnerable to CVE-

2017-12652 which affects versions before 1.6.32. This vulnerability pertains

to an issue in the 'png_set_text_2' function in 'pngset.c'. A malicious attacker

can use this vulnerability to cause a denial-of-service attack due to an out-

of-bounds read.

When exploited an attacker could crash your application through a denial-of-

service attack or, in some cases, execute arbitrary code. This is concerning

for applications that process PNG image files.

Remediation

It is recommended to upgrade the libpng library to version 1.6.32 or later

Status

Passed

Severity

Low

Impact

Due to multiple vulnerabilities within the libjpeg-turbo library the application

is potentially vulnerable to denial-of-service conditions along with the

potential of sensitive information disclosure.

Remediation

It is recommended to upgrade the libjpeg-turbo library to version 2.0.2 or

later

Status

Passed

Severity

Low

Insecure libjpeg-turbo Library Version

Versions of the libjpeg-turbo library prior to 2.0.2 contain vulnerabilities

related to the processing of JPEG image files. These issues arise from the

way the vulnerable library handles specific encoding scenarios and processes

color quantization tables. These vulnerabilities can be exploited using

specially crafted JPEG files.

Insecure OkHTTP Library Version

Versions of the OkHTTP library prior to 4.0 may contain vulnerabilities related

to the processing and handling of network communications. This includes

missing security enhancements and the use of deprecated network

protocols.

Impact

Utilizing outdated versions of the OkHTTP library can lead to interception of

data, various Man-in-the-Middle attacks along with an overall degraded

application security posture.

Remediation

It is recommended to upgrade the OkHTTP library to version 4 or later

Status

Passed

Severity

Low

Impact

Deprecated libraries do not receive regular updates, patches or bug fixes

which can lead to security and functionality issues. Additionally, the use of

deprecated libraries can cause incompatibility issues for your application.

Remediation

Migrate from the Joda time library to 'java.time'

Status

Passed

Severity

Low

Insecure Joda Library Identified

Joda time library which historically has been popular for handling data and

time operations has been deprecated in favor of 'java.time'. Continued use of

deprecated libraries can expose your application to a variety of security risks.

Application Utilizes Stack Canaries

This finding pertains to the absence of stack canaries within native

application libraries. Stack canaries are a crucial stack smashing protection

measure designed to detect and prevent buffer overflow attacks by placing a

random value before the return address on the stack.

Impact

The absence of stack canaries within native libraries renders the application

vulnerable to method buffer overflow attacks and other memory corruption-

related exploits. Exploiting these vulnerabilities could lead to compromised

user data, financial loss, and reputational damage to the organization.

Remediation

To address this vulnerability, ensure that all native libraries utilized by the

Android application are compiled with stack canaries enabled.

Status

Passed

Severity

Medium

Impact

Failure to enable Safe Browsing for an Android application increases the risk

for users. Without this protection, users are vulnerable to accessing

potentially malicious websites without warning. This can lead to unauthorized

data access, phishing attempts and potential malware infections.

Remediation

To remediate this vulnerability, developers should ensure that Safe Browsing

is enabled within the applications AndroidManifest.

Safe Browsing Not Enabled in WebViews

This vulnerability involves checking if Safe Browsing is enabled within the

applications AndroidManifest file. Safe Browsing is a feature provided by

Google Play Protect that warns users when they attempt to navigate to

potentially dangerous websites.

Application Utilizes Position Independent Code

This finding pertains to the absence of Position Independent Code (PIC)

within native libraries. PIC is a crucial security measure that allows the code

Status

Passed

Severity

Low

Impact

The absence of Position Independent Code (PIC) within native libraries

exposes the application to potential memory corruption vulnerabilities.

Exploiting these vulnerabilities could result in compromised user data,

financial loss, and reputational harm to the organization.

Remediation

To mitigate this vulnerability, ensure that all native libraries utilized by the

Android application are compiled with Position Independent Code (PIC)

enabled.

to execute regardless of its absolute address, enhancing the application's

resilience against memory corruption exploits.

CRYPTO
Cryptography is essential for mobile apps because mobile devices are highly portable

and can be easily lost or stolen. This means that an attacker who gains physical access

to a device can potentially access all the sensitive data stored on it, including

passwords, financial information, and personally identifiable information. Cryptography

provides a means of protecting this sensitive data by encrypting it so that it cannot be

easily read or accessed by an unauthorized user. The purpose of the controls in this

category is to ensure that the verified app uses cryptography according to industry best

practices, which are typically defined in external standards such as NIST.SP.800-175B

and NIST.SP.800-57. This category also focuses on the management of cryptographic

keys throughout their lifecycle, including key generation, storage, and protection. Poor

key management can compromise even the strongest cryptography, so it is crucial for

developers to follow the recommended best practices to ensure the security of their

users' sensitive data.

Cryptography plays an especially important role in securing the user's data -

even more so in a mobile environment, where attackers having physical

access to the user's device is a likely scenario. This control covers general

cryptography best practices, which are typically defined in external

standards.

Status Severity

CRYPTO-1

The app employs current strong cryptography and

uses it according to industry best practices.

C1

Application Utilizing Insecure Cryptography

The application contains references within the code to insecure cryptography

implementations. These outdated cryptographic algorithms do not need

industry compliance standards and can be vulnerable to a variety of attacks

resulting in a breach of application confidentiality and integrity.

Failed Low

Impact

The use of insecure cryptographic algorithms can lead to unauthorized

decryption of data and overall a lack of data integrity. Additionally, such

practices risk non-compliance with various industry standards.

Remediation

Replace insecure cryptographic implementations with the secure industry

accepted alternatives. For additional guidance please refer to following

android developer guide - https://developer.android.com/privacy-and-

security/cryptography

Evidence

File: /data/local/tmp/artifacts/output/sources/com/corellium/cafe/crypto/Ins

ecureCrypto.java

Cipher.getInstance('DES');

File: /data/local/tmp/artifacts/output/sources/com/corellium/cafe/crypto/Ins

ecureCrypto.java

Cipher.getInstance('RC4');

File: /data/local/tmp/artifacts/output/sources/com/corellium/cafe/crypto/Ins

ecureCrypto.java

MessageDigest.getInstance('MD5');

File: /data/local/tmp/artifacts/output/sources/com/corellium/cafe/crypto/Ins

ecureCrypto.java

KeyGenerator.getInstance('DES');

File: /data/local/tmp/artifacts/output/sources/com/corellium/cafe/crypto/Ins

ecureCrypto.java

SecretKeyFactory.getInstance('PBKDF2WithHmacSHA1');

Status

Failed

Severity

Low

Impact

Using ECB mode (Electronic Codebook) or 'NoPadding' with symmetric

encryption exposes sensitive data to possible decryption by unauthorized

parties. The utilization of these insecure modes will not meet industry

compliance standards.

Remediation

It is recommended to switch to a more secure mode of operation for

symmetric encryption, such as CBC (Cipher Block Chaining) and ensure the

use of a strong, cryptographically secure pseudo-random initialization vector

(IV). All cryptographic practices should be aligned with current industry

standards and best practices.

Evidence

File: /data/local/tmp/artifacts/output/sources/com/corellium/cafe/crypto/Ins

ecureCrypto.java

Cipher.getInstance('AES/ECB/NoPadding');

Application Utilizing Insecure Symmetric Encryption Modes

The application employs insecure modes of symmetric encryption. These

modes do not provide strong data confidentiality and may be vulnerable to a

variety of cryptographic attacks such as pattern analysis and padding oracle

attacks, compromising the confidentiality and integrity of the application's

data.

Status

Failed

Severity

Low

Impact

Using the 'java.util.Random' class for random number generation can lead to

predictable values that may be exploited by attackers. This could result in

potential security vulnerabilities, including unauthorized access and data

breaches.

Remediation

Review and update your application code to replace instances of the

'java.util.Random' class with the 'java.security.SecureRandom' class for

generating random values. Ensure that all random number generation

adheres to best practices for security. Refer to the official Android security

guidelines for implementing secure random number generation.

Evidence

File: /data/local/tmp/artifacts/output/sources/okhttp3/internal/ws/RealWebS

ocket.java

import java.util.Random;

File: /data/local/tmp/artifacts/output/sources/okhttp3/internal/ws/WebSock

etWriter.java

import java.util.Random;

Insecure Random Number Generation

The application has been found to utilize the 'java.util.Random' class for

generating random values. This class is not suitable for security-related

purposes as it produces predictable random values, which can compromise

the overall security of the application.

File: /data/local/tmp/artifacts/output/sources/okhttp3/OkHttpClient.java

import java.util.Random;

File: /data/local/tmp/artifacts/output/sources/kotlin/random/FallbackThread

LocalRandom$implStorage$1.java

import java.util.Random;

File: /data/local/tmp/artifacts/output/sources/kotlin/random/FallbackThread

LocalRandom.java

import java.util.Random;

File: /data/local/tmp/artifacts/output/sources/kotlin/random/KotlinRandom.j

ava

import java.util.Random;

File: /data/local/tmp/artifacts/output/sources/kotlin/random/PlatformRando

m.java

import java.util.Random;

File: /data/local/tmp/artifacts/output/sources/kotlin/random/AbstractPlatfor

mRandom.java

import java.util.Random;

File: /data/local/tmp/artifacts/output/sources/kotlin/random/PlatformRando

mKt.java

import java.util.Random;

File: /data/local/tmp/artifacts/output/sources/kotlin/random/jdk8/PlatformT

hreadLocalRandom.java

import java.util.Random;

File: /data/local/tmp/artifacts/output/sources/kotlin/collections/CollectionsK

t__MutableCollectionsJVMKt.java

import java.util.Random;

File: /data/local/tmp/artifacts/output/sources/kotlin/collections/CollectionsK

t__CollectionsJVMKt.java

import java.util.Random;

File: /data/local/tmp/artifacts/output/sources/androidx/activity/result/Activit

yResultRegistry.java

import java.util.Random;

Even the strongest cryptography would be compromised by poor key

management. This control covers the management of cryptographic keys

throughout their lifecycle, including key generation, storage and protection.

CRYPTO-2

The app performs key management according to

industry best practices.

C2

Application Contains Hardcoded SQLCipher Key

Status

Failed

Severity

Medium

Impact

Hardcoded encryption keys pose a severe risk to data confidentiality and

integrity. If an attacker has access to the key, they can decrypt and retrieve

any data stored within the database.

Remediation

Remove all hardcoded encryption keys from the source code and instead

utilize a secure method of key management, such as leveraging platform-

specific key stores or using a secure server for key distribution.

Evidence

File: /data/local/tmp/artifacts/output/sources/com/corellium/cafe/crypto/Ins

ecureCrypto.java

Log.i('InsecureCrypto', 'moreInsecurities: key PRAGMA Key');

Status

Passed

Severity

Low

Impact

The application's codebase contains hardcoded instances of a 'PRAGMA

Key', indicating the encryption key for a database. Hardcoded keys can be

easily extracted from the application bundle, making the database encryption

ineffective.

Application Contains Hardcoded API Keys

The application's code contains hardcoded instances of an API key.

Hardcoded keys are susceptible to extraction, posing a security risk as they

can be utilized maliciously to access sensitive data or perform unauthorized

actions.

Hardcoded API keys stored insecurely can pose a significant security risk. If

an API key gets extracted, it can be used to gain unauthorized access to

sensitive resources or services associated.

Remediation

Remove all sensitive hardcoded API keys from the application source code.

Implement a secure method for API key management based on industry best

practices.

NETWORK
Secure networking is a critical aspect of mobile app security, particularly for apps that

communicate over the network. In order to ensure the confidentiality and integrity of

data in transit, developers typically rely on encryption and authentication of the remote

endpoint, such as through the use of TLS. However, there are numerous ways in which a

developer may accidentally disable the platform secure defaults or bypass them entirely

by utilizing low-level APIs or third-party libraries. This category is designed to ensure

that the mobile app sets up secure connections under any circumstances. Specifically, it

focuses on verifying that the app establishes a secure, encrypted channel for network

communication. Additionally, this category covers situations where a developer may

choose to trust only specific Certificate Authorities (CAs), which is commonly referred to

as certificate pinning or public key pinning.

Ensuring data privacy and integrity of any data in transit is critical for any app

that communicates over the network. This is typically done by encrypting

data and authenticating the remote endpoint, as TLS does. However, there

are many ways for a developer to disable the platform secure defaults, or

bypass them completely by using low-level APIs or third-party libraries. This

control ensures that the app is in fact setting up secure connections in any

situation.

Status Severity

NETWORK-1

The app secures all network traffic according to the

current best practices.

N1

Application Allows Insecure Network Connections

The application is susceptible to insecure network connections due to

misconfigurations within the network settings. These misconfigurations can

lead to the absence of secure network protocols and weak security

configurations.

Failed Medium

Impact

Insecure network connections can pose a risk to the confidentiality and

integrity of data transmitted over the network. Attackers can potentially

intercept and manipulate sensitive information being exchanged between the

application and the remote servers.

Remediation

Implement secure network protocols, enforce the use of HTTPS for

communication with remote servers, and adopt industry best practices for

network security configurations.

Evidence

File: /data/local/tmp/artifacts/output/resources/AndroidManifest.xml

android:usesCleartextTraffic=true

File: /data/local/tmp/artifacts/output/resources/res/xml/network_security_c

onfig.xml

cleartextTrafficPermitted=true

Status

Passed

Severity

Medium

Impact

Transmitting the device's IMEI over HTTP in cleartext poses a security risk.

Attackers can potentially intercept and retrieve this sensitive information,

HTTP Cleartext Transmission of Device IMEI

The application transmits the device's IMEI over HTTP in cleartext, exposing

the sensitive value to potential interception and unauthorized access.

compromising the confidentiality and integrity of the data.

Remediation

Implement secure network communication practices by ensuring that

sensitive information, such as the device's IMEI, is transmitted over HTTPS.

Status

Passed

Severity

Medium

Impact

Transmitting the device's GPS Longitude Coordinates over HTTP in cleartext

poses a security risk. Attackers can potentially intercept and retrieve this

sensitive information, compromising the confidentiality and integrity of the

data.

Remediation

Implement secure network communication practices by ensuring that

sensitive information, such as the device's GPS Longitude Coordinates, is

transmitted over HTTPS.

Status

Passed

Severity

Medium

HTTP Cleartext Transmission of GPS Longitude Coordinates

The application transmits the device's GPS Longitude Coordinates over HTTP

in cleartext, exposing the sensitive value to potential interception and

unauthorized access.

HTTP Cleartext Transmission of GPS Latitude Coordinates

The application transmits the device's GPS Latitude Coordinates over HTTP

in cleartext, exposing the sensitive value to potential interception and

unauthorized access.

Impact

Transmitting the device's GPS Latitude Coordinates over HTTP in cleartext

poses a security risk. Attackers can potentially intercept and retrieve this

sensitive information, compromising the confidentiality and integrity of the

data.

Remediation

Implement secure network communication practices by ensuring that

sensitive information, such as the device's GPS Latitude Coordinates, is

transmitted over HTTPS.

Status

Passed

Severity

High

Impact

Transmitting sensitive data over HTTP in cleartext poses a security risk.

Attackers can potentially intercept and retrieve this sensitive information,

compromising the confidentiality and integrity of the data.

Remediation

Implement secure network communication practices by ensuring that

sensitive information, such as sensitive data, is transmitted over HTTPS.

Status Severity

HTTP Cleartext Transmission of Sensitive Data

The application transmits sensitive data over HTTP in cleartext, exposing the

sensitive value to potential interception and unauthorized access.

HTTP Cleartext Transmission of DNS Address

The application transmits the device's DNS Address over HTTP in cleartext,

exposing the sensitive value to potential interception and unauthorized

access.

Passed Low

Impact

Transmitting the device's DNS Address over HTTP in cleartext poses a

security risk. Attackers can potentially intercept and retrieve this sensitive

information, compromising the confidentiality and integrity of the data.

Remediation

Implement secure network communication practices by ensuring that

sensitive information, such as the device's DNS Address, is transmitted over

HTTPS.

Status

Passed

Severity

Medium

Impact

Transmitting the device's Build Fingerprint over HTTP in cleartext poses a

security risk. Attackers can potentially intercept and retrieve this sensitive

information, compromising the confidentiality and integrity of the data.

Remediation

Implement secure network communication practices by ensuring that

sensitive information, such as the device's Build Fingerprint, is transmitted

over HTTPS.

HTTP Cleartext Transmission of Build Fingerprint

The application transmits the device's Build Fingerprint over HTTP in

cleartext, exposing the sensitive value to potential interception and

unauthorized access.

HTTP Cleartext Transmission of Bluetooth MAC Address

The application transmits the device's Bluetooth MAC Address over HTTP in

cleartext, exposing the sensitive value to potential interception and

unauthorized access.

Status

Passed

Severity

Medium

Impact

Transmitting the device's Bluetooth MAC Address over HTTP in cleartext

poses a security risk. Attackers can potentially intercept and retrieve this

sensitive information, compromising the confidentiality and integrity of the

data.

Remediation

Implement secure network communication practices by ensuring that

sensitive information, such as the device's Bluetooth MAC Address, is

transmitted over HTTPS.

Status

Passed

Severity

Medium

Impact

Transmitting the device's Android ID over HTTP in cleartext poses a security

risk. Attackers can potentially intercept and retrieve this sensitive information,

compromising the confidentiality and integrity of the data.

Remediation

Implement secure network communication practices by ensuring that

sensitive information, such as the device's Android ID, is transmitted over

HTTPS.

HTTP Cleartext Transmission of Device Android ID

The application transmits the device's Android ID over HTTP in cleartext,

exposing the sensitive value to potential interception and unauthorized

access.

Status

Passed

Severity

Low

Impact

Transmitting the device's WiFi MAC Address in the URL of an HTTPS request

poses a security risk. This data can be cached by browsers, proxies or other

intermediary systems, potentially exposing it to unauthorized access and

compromising the confidentiality of the data.

Remediation

Refrain from including sensitive information, such as the device's WiFi MAC

Address, in the URL of the HTTPS request. Instead, transmit sensitive data

within the request body or as HTTP headers.

Status

Passed

Severity

Medium

Impact

Transmitting the device IMEI in the URL of an HTTPS request poses a security

risk. This data can be cached by browsers, proxies or other intermediary

systems, potentially exposing it to unauthorized access and compromising

the confidentiality of the data.

Remediation

HTTPS Traffic URL Contains WiFi MAC Address

The application transmits the device's WiFi MAC address in the URL of an

HTTPS request, which can be cached and potentially exposed in various

ways.

HTTPS Traffic URL Contains Device IMEI

The application transmits the device IMEI in the URL of an HTTPS request,

which can be cached and potentially exposed in various ways.

Refrain from including sensitive information, such as the device IMEI, in the

URL of the HTTPS request. Instead, transmit sensitive data within the request

body or as HTTP headers.

Status

Passed

Severity

Medium

Impact

Opting out of the Always-On feature in a VPN configuration poses a low risk.

It may result in intermittent lapses of secure VPN connections, potentially

exposing sensitive data to unauthorized parties.

Remediation

Reconfigure the application's VPN settings to enable the Always-On feature,

ensuring a persistent secure connection and reducing the likelihood of

unintended data exposure.

Status

Passed

Severity

Low

Impact

Transmitting the device's GPS Longitude in the URL of an HTTPS request

poses a security risk. This data can be cached by browsers, proxies or other

intermediary systems, potentially exposing it to unauthorized access and

compromising the confidentiality of the data.

Application VPN Opts out of Always-On Feature

The application, which utilizes a VPN, has opted out of the Always-On

feature. This configuration may expose the application's network traffic to

potential interception and compromise the effectiveness of the VPN.

HTTPS Traffic URL Contains Device's GPS Longitude

The application transmits the device's GPS Longitude in the URL of an HTTPS

request, which can be cached and potentially exposed in various ways.

Remediation

Refrain from including sensitive information, such as the device's GPS

Longitude, in the URL of the HTTPS request. Instead, transmit sensitive data

within the request body or as HTTP headers.

Status

Passed

Severity

Low

Impact

Transmitting the device's GPS Latitude in the URL of an HTTPS request

poses a security risk. This data can be cached by browsers, proxies or other

intermediary systems, potentially exposing it to unauthorized access and

compromising the confidentiality of the data.

Remediation

Refrain from including sensitive information, such as the device's GPS

Latitude, in the URL of the HTTPS request. Instead, transmit sensitive data

within the request body or as HTTP headers.

Status

Passed

Severity

Medium

Impact

HTTPS Traffic URL Contains Device's GPS Latitude

The application transmits the device's GPS Latitude in the URL of an HTTPS

request, which can be cached and potentially exposed in various ways.

HTTPS Traffic URL Contains Sensitive Data

The application transmits sensitive data in the URL of an HTTPS request,

which can be cached and potentially exposed in various ways.

Transmitting sensitive data in the URL of an HTTPS request poses a security

risk. This data can be cached by browsers, proxies or other intermediary

systems, potentially exposing it to unauthorized access and compromising

the confidentiality of the data.

Remediation

Refrain from including sensitive data in the URL of the HTTPS request.

Instead, transmit sensitive data within the request body or as HTTP headers.

Status

Passed

Severity

Low

Impact

Transmitting the device's DNS Address in the URL of an HTTPS request

poses a security risk. This data can be cached by browsers, proxies or other

intermediary systems, potentially exposing it to unauthorized access and

compromising the confidentiality of the data.

Remediation

Refrain from including the device's DNS Address in the URL of the HTTPS

request. Instead, transmit sensitive data within the request body or as HTTP

headers.

Status

Passed

Severity

Low

HTTPS Traffic URL Contains DNS Address

The application transmits the device's DNS Address in the URL of an HTTPS

request, which can be cached and potentially exposed in various ways.

HTTPS Traffic URL Contains Build Fingerprint

The application transmits the device's Build Fingerprint in the URL of an

HTTPS request, which can be cached and potentially exposed in various

ways.

Impact

Transmitting the device's Build Fingerprint in the URL of an HTTPS request

poses a security risk. This data can be cached by browsers, proxies or other

intermediary systems, potentially exposing it to unauthorized access and

compromising the confidentiality of the data.

Remediation

Refrain from including the device's Build Fingerprint in the URL of the HTTPS

request. Instead, transmit sensitive data within the request body or as HTTP

headers.

Status

Passed

Severity

Low

Impact

Transmitting the device's Bluetooth MAC Address in the URL of an HTTPS

request poses a security risk. This data can be cached by browsers, proxies

or other intermediary systems, potentially exposing it to unauthorized access

and compromising the confidentiality of the data.

Remediation

Refrain from including the device's Bluetooth MAC Address in the URL of the

HTTPS request. Instead, transmit sensitive data within the request body or as

HTTP headers.

HTTPS Traffic URL Contains Bluetooth MAC Address

The application transmits the device's Bluetooth MAC Address in the URL of

an HTTPS request, which can be cached and potentially exposed in various

ways.

HTTPS Traffic URL Contains Android ID

The application transmits the device's Android ID in the URL of an HTTPS

request, which can be cached and potentially exposed in various ways.

Status

Passed

Severity

Low

Impact

Transmitting the device's Android ID in the URL of an HTTPS request poses a

security risk. This data can be cached by browsers, proxies or other

intermediary systems, potentially exposing it to unauthorized access and

compromising the confidentiality of the data.

Remediation

Refrain from including the device's Android ID in the URL of the HTTPS

request. Instead, transmit sensitive data within the request body or as HTTP

headers.

Status

Passed

Severity

Low

Impact

Utilizing an insecure or unrecognized security provider can expose the

application to various security risks, including weak encryption, improper

handling of cryptographic keys, and susceptibility to known attacks. This can

also lead to unauthorized application access and potential data breaches.

Remediation

Review the application's cryptographic implementations to ensure the use of

industry-recognized security providers, such as those provided by the

Android platform or other well-established libraries. Avoid using custom

Insecure Security Provider

The application has been identified to use an unrecognized security provider

for cryptographic operations or lacks the use of a well-established security

provider. This practice may introduce vulnerabilities, as unrecognized or

custom providers might not adhere to industry standards and best practices.

security providers unless they have undergone thorough security reviews and

testing.

Status

Passed

Severity

Low

Impact

An insecure TLS configuration can expose the application to various security

threats, including man-in-the-middle attacks, eavesdropping, and data

tampering. This compromises the confidentiality and integrity of the data

transmitted between the application and its endpoints.

Remediation

Review and update the TLS configuration for all endpoints to ensure the use

of secure ciphers and protocols. Adhere to industry best practices by

disabling outdated protocols and weak ciphers. Regularly consult the latest

security guidelines and recommendations to maintain a strong TLS

configuration.

Status

Passed

Severity

Low

Insecure TLS configuration

The application connects to endpoints using TLS configurations that do not

adhere to industry best practices. This includes the use of outdated or

insecure ciphers and protocols, which can weaken the overall security of the

communication channels.

Cookie missing 'Secure' flag

Cookies set by the application have been identified without the 'Secure' flag.

The 'Secure' flag ensures that cookies are only transmitted over secure

HTTPS connections, protecting them from being exposed over unsecured

networks.

Impact

Without the 'Secure' flag, cookies can be sent over insecure connections,

potentially exposing sensitive information to attackers. This can lead to

session hijacking, data leakage and other potential security vulnerabilities.

Remediation

Review and update the application's cookie management to ensure that all

cookies intended for secure contexts are set with the 'Secure flag'. This

ensures cookies are only transmitted over HTTPS connections, enhancing the

security of user data and sessions.

Status

Passed

Severity

Low

Impact

Setting the target SDK version to less than 29 poses a low risk. The

application may lack support for the latest network configurations, leaving it

vulnerable to potential attacks targeting outdated protocols.

Remediation

Update the application's target SDK version to 29 or above to ensure

compatibility with the latest secure network configurations provided by newer

Android versions.

Application Target SDK Allows for Insecure Network

Configuration

The application's target SDK version is set to a value less than 29. This may

result in the application not leveraging the latest secure network

configurations available in the newer Android versions. Allowing your

application to be run on older versions can potentially result in sensitive data

being exposed.

Cookie missing 'httpOnly' flag

Status

Passed

Severity

Low

Impact

Without the 'httpOnly' flag, cookies are accessible to client-side scripts,

making them vulnerable to XSS attacks. Attackers can potentially steal

sensitive information, manipulate sessions or perform various malicious

actions.

Remediation

Review and update the application's cookie management to ensure that all

cookies containing sensitive information are set with the 'httpOnly' flag. This

restricts access to cookies from client-side scripts, mitigating the risks of

XSS attacks.

Status

Passed

Severity

Low

Impact

An attacker exploiting this vulnerability may gain unauthorized access to

sensitive data transmitted by the application therefore compromising both

data confidentiality and integrity.

Remediation

Cookies set by the application have been identified without the 'httpOnly'

flag. The 'httpOnly' flag prevents client-side scripts from accessing cookies,

reducing the risk of cross-site scripting (XSS) attacks.

Application Contains Heartbleed Vulnerable OpenSSL

Version

The application contains a version of OpenSSL that is known to be vulnerable

to the Heartbleed CVE. The Heartbleed vulnerability could potentially allow an

attacker to read sensitive data from the application's memory.

Update the OpenSSL library to a version that addresses the Heartbleed

vulnerability. Regularly monitor for security updates and vulnerabilities in

third-party libraries to maintain the security of network communication.

Status

Passed

Severity

Low

Impact

Exploiting the CCS Injection vulnerability may enable an attacker to interfere

with the encrypted communication, potentially gaining unauthorized access

to application data. This poses a risk to both data confidentiality and integrity.

Remediation

Update the OpenSSL library to a version that addresses the Change Cipher

Spec Injection vulnerability. Regularly monitor for security updates and

vulnerabilities in third-party libraries to ensure the security of network

communication.

Status

Passed

Severity

Info

Application Contains Change Cipher Spec Injection

Vulnerable OpenSSL Version

The application contains a version of OpenSSL that is known to be vulnerable

to Change Cipher Spec (CCS) Injection. This vulnerability may allow an

attacker to manipulate the Change Cipher Spec protocol, potentially leading

to unauthorized access and manipulation of encrypted communication.

Application Contains Insecure HTTP Traffic

The application utilizes HTTP endpoints, potentially exposing sensitive

information to interception. The use of unencrypted HTTP endpoints poses a

security risk as transmitted information may be intercepted or modified by

unauthorized parties.

Impact

The use of unencrypted HTTP endpoints exposes transmitted data to

potential interception and manipulation. This poses a risk to both the data

confidentiality and integrity for any data transmitted between the application

and remote servers.

Remediation

Identify and assess all HTTP endpoints used by the application. Implement

secure network communication practices by transitioning to HTTPS for

sensitive endpoints.

Status

Passed

Severity

Medium

Impact

Transmitting the device's WiFi MAC Address over HTTP in cleartext poses a

security risk. Attackers can potentially intercept and retrieve this sensitive

information, compromising the confidentiality and integrity of the data.

Remediation

Implement secure network communication practices by ensuring that

sensitive information, such as the device's WiFi MAC Address, is transmitted

over HTTPS.

HTTP Cleartext Transmission of WiFi MAC Address

The application transmits the device's WiFi MAC Address over HTTP in

cleartext, exposing the sensitive value to potential interception and

unauthorized access.

PLATFORM
The security of mobile apps heavily depends on their interaction with the mobile

platform, which often involves exposing data or functionality intentionally through the

use of platform-provided inter-process communication (IPC) mechanisms and

WebViews to enhance the user experience. However, these mechanisms can also be

exploited by attackers or other installed apps, potentially compromising the app's

security. Furthermore, sensitive data, such as passwords, credit card details, and one-

time passwords in notifications, is often displayed in the app's user interface. It is

essential to ensure that this data is not unintentionally leaked through platform

mechanisms such as auto-generated screenshots or accidental disclosure through

shoulder surfing or device sharing. This category comprises controls that ensure the

app's interactions with the mobile platform occur securely. These controls cover the

secure use of platform-provided IPC mechanisms, WebView configurations to prevent

sensitive data leakage and functionality exposure, and secure display of sensitive data in

the app's user interface. By implementing these controls, mobile app developers can

safeguard sensitive user information and prevent unauthorized access by attackers.

Apps typically use platform provided IPC mechanisms to intentionally expose

data or functionality. Both installed apps and the user are able to interact with

the app in many different ways. This control ensures that all interactions

involving IPC mechanisms happen securely.

Status

Passed

Severity

Medium

PLATFORM-1

The app uses IPC mechanisms securely.

P1

Application Manifest Contains Unverified Deep Links

The Android manifest contains unverified deep links, which can potentially

expose users to phishing attacks or unintended navigation.

Impact

An attacker can exploit unverified deep links to redirect users to malicious

sites or manipulate the flow of the application

Remediation

Implement proper verification mechanisms for deep links in the Android

Manifest. Utilize secure protocols, such as HTTPS, to ensure the integrity of

deep links. Validate deep links on the server side to prevent manipulation.

Status

Failed

Severity

Low

Impact

Intent redirection vulnerabilities may lead to unauthorized actions,

compromise user privacy, or expose sensitive information.

Remediation

Implement secure intent handling mechanisms to prevent redirection attacks.

Ensure that all intents are properly validated, and use explicit intents where

possible. Avoid relying solely on implicit intents, and validate input

parameters to ensure their integrity.

Evidence

File: /data/local/tmp/artifacts/output/resources/AndroidManifest.xml

com.corellium.cafe.ui.activities.SecretActivity

File: /data/local/tmp/artifacts/output/resources/AndroidManifest.xml

Application Utilizes Intents Vulnerable to Redirection

The application has registered intents that are vulnerable to redirection

attacks, allowing potential attackers to manipulate the intended flow of the

application.

com.corellium.cafe.ui.activities.MainActivity

Status

Passed

Severity

Low

Impact

Broadcast receivers without proper permissions may lead to unauthorized

access, manipulation, or disclosure of sensitive data compromising the

overall security and integrity of the application.

Remediation

Review and update the AndroidManifest.xml file to ensure that exported

broadcast receivers have the appropriate permissions defined.

Status

Failed

Severity

Info

Impact

The use of dangerous permissions may grant the application access to

sensitive data or device functionalities without explicit user consent. This

Application Utilizes Broadcast Receivers Without

Permissions

The application contains broadcast receivers that are exported without

proper permissions, potentially exposing sensitive information and allowing

unauthorized parties to interact with the receivers.

Application Utilizes Potentially Dangerous Permissions

The application requests and registers dangerous permissions within the

AndroidManifest. Dangerous permissions without a valid reason may expose

users to potential privacy and security risks, as the application gains access

to sensitive data or device features.

vulnerability could lead to unauthorized actions, data exposure, or misuse of

privileged capabilities.

Remediation

Conduct a thorough review of the application's requested permissions and

only request permissions that are essential for the application's core features.

Evidence

File: /data/local/tmp/artifacts/output/resources/AndroidManifest.xml

android.permission.WRITE_EXTERNAL_STORAGE

WebViews are typically used by apps that have a need for increased control

over the UI. This control ensures that WebViews are configured securely to

prevent sensitive data leakage as well as sensitive functionality exposure (e.g.

via JavaScript bridges to native code).

Status

Failed

Severity

Low

Impact

Attackers may exploit this vulnerability during runtime to access debug

information from the affected WebViews potentially leading to unauthorized

access and exposure of sensitive data.

Remediation

PLATFORM-2

The app uses WebViews securely.

P2

Application Contains Debuggable WebViews

The application code contains debuggable WebViews within. Debuggable

WebViews may allow attackers, using debugging tools, to access data during

runtime, leading to potential disclosure of sensitive data.

Disable debugging features for WebViews in the application code before

releasing the production version. Ensure that debuggable attributes are set to

'false', especially for webViews handling sensitive data.

Evidence

File: /data/local/tmp/artifacts/output/sources/com/corellium/cafe/crypto/Ins

ecureCrypto.java

setWebContentsDebuggingEnabled(true)

Status

Failed

Severity

Low

Impact

The presence of an insecure JavaScript interface in the application code

introduces a significant impact. Exploitation of this vulnerability may lead to

unauthorized access and potential manipulation of sensitive data. Attackers

could execute arbitrary code, posing risks to user privacy and application

integrity.

Remediation

Review and update the application code to ensure secure usage of

'addJavascriptInterface'. Limit the use of JavaScript interfaces to only

essential functionalities, and avoid exposing sensitive data. Implement proper

input validation and sanitization to prevent malicious code execution.

Evidence

File: /data/local/tmp/artifacts/output/sources/com/corellium/cafe/crypto/Ins

ecureCrypto$2.java

Application Utilizes Insecure JavaScript Interface

The application code utilizes an insecure JavaScript interface, potentially

exposing sensitive data to unauthorized access. Insecure usage of

'addJavascriptInterface' may allow attackers to execute arbitrary code.

@JavascriptInterface

File: /data/local/tmp/artifacts/output/sources/com/corellium/cafe/crypto/Ins

ecureCrypto.java

addJavascriptInterface

Status

Failed

Severity

Low

Impact

The utilization of WebViews with JavaScript enabled introduces a potential

security risk. Attackers could exploit this vulnerability to execute malicious

scripts. The consequences may include unauthorized actions, unintended

data exposure, and other security threats.

Remediation

Review and assess the necessity of enabling JavaScript in WebViews. If

possible, disable JavaScript in WebViews or implement proper input

validation and sanitization to mitigate security risks.

Evidence

File: /data/local/tmp/artifacts/output/sources/com/corellium/cafe/ui/activitie

s/WebViewActivity.java

setJavaScriptEnabled(true)

Application Contains WebViews with Javascript Enabled

The application incorporates WebViews with JavaScript enabled, potentially

exposing users to various security concerns. Enabling JavaScript in

WebViews may allow attackers to execute malicious scripts.

File: /data/local/tmp/artifacts/output/sources/com/corellium/cafe/crypto/Ins

ecureCrypto.java

setJavaScriptEnabled(true)

Sensitive data has to be displayed in the UI in many situations (e.g.

passwords, credit card details, OTP codes in notifications). This control

ensures that this data doesn't end up being unintentionally leaked due to

platform mechanisms such as auto-generated screenshots or accidentally

disclosed via e.g. shoulder surfing or sharing the device with another person.

Status

Passed

Severity

Medium

Impact

Task hijacking can allow malicious applications to take control of tasks,

leading to security risks such as unauthorized access, data leakage, and

spoofing attacks. This compromises the application's overall security and the

user's trust.

Remediation

To mitigate the risk of task hijacking, ensure that the application adheres to

secure task management best practices. For applications with a minimum

SDK version below 29, review the AndroidManifest file to identify activities

with 'launchmode='singleTask'. For such activities, set 'taskAffinity=""' to

PLATFORM-3

The app uses the user interface securely.

P3

Application is Vulnerable to Task Hijacking

The application may be susceptible to task hijacking, a vulnerability where

malicious applications can intercept and manipulate tasks. This issue arises in

applications with a minimum SDK version below 29 and specific activity

configurations that can be exploited.

prevent task hijacking. Additionally, consider updating the application's

minimum SDK version to 29 or higher to leverage enhanced security features.

RESILIENCE
Defense-in-depth measures such as code obfuscation, anti-debugging, anti-tampering,

etc. are important to increase app resilience against reverse engineering and specific

client-side attacks. They add multiple layers of security controls to the app, making it

more difficult for attackers to successfully reverse engineer and extract valuable

intellectual property or sensitive data from it

Apps run on a user-controlled device, and without proper protections it's

relatively easy to run a modified version locally (e.g. to cheat in a game, or

enable premium features without paying), or upload a backdoored version of

it to third-party app stores. This control tries to ensure the integrity of the

app's intended functionality by preventing modifications to the original code

and resources.

Status

Failed

Severity

Low

Impact

The application can be replaced with a malicious version without your

knowledge. The application could then be utilized to steal sensitive data or

perform any number of additional attacks while pretending to be a legitimate

application.

RESILIENCE-2

The app implements anti-tampering mechanisms.

R2

Janus Exploitation Possible Due to Current Minimum SDK

The application is potentially vulnerable to the Janus exploit due to a low

minimum SDK version. This attack would allow attacks to inject their own

code into the binary package and release it as a legitimate update to the

application.

Remediation

The application should require a minimum SDK of '24' or higher and utilize a

signing scheme more recent than v1. Please note this vulnerability only looks

at the minimum SDK and the signing scheme is checked separately.

Evidence

File: /data/local/tmp/artifacts/output/resources/AndroidManifest.xml

android:minSdkVersion=23

Status

Passed

Severity

Medium

Impact

The use of a weak signing key (1024-bit RSA) exposes your Android

application to various security risks. These risks can include tampering with

the application's code or resources, injecting malicious payloads, or

impersonating the applications identity through fake updates.

Remediation

To mitigate this vulnerability, developers should move to using a stronger

signing key length recommended by industry standards (2048-bits

minimum).

Application Utilizes a Weak Signing Key

Due to the deprecated status of 1024-bit RSA keys by the NIST standards,

the use of such keys in your application's signing configuration presents a

significant security concern. This outdated key length poses inherent

vulnerabilities, potentially resulting in compromising your application's overall

security posture.

Application Utilizes a Weak Signing Scheme

Status

Passed

Severity

Medium

Impact

Exclusive reliance on the V1 signing scheme exposes the application to

significant risks. Attackers can modify an application with malicious code

without detection leading to unauthorized code execution, data breaches and

compromised user privacy.

Remediation

To mitigate this vulnerability, developers should implement a multi-layered

approach to the APK signing by incorporating both V1 and V2 signing

schemes. Leveraging V2 signatures ensures the integrity of the entire APK

while optimizing verification speed.

Understanding the internals of an app is typically the first step towards

tampering with it (either dynamically, or statically). This control tries to

impede comprehension by making it as difficult as possible to figure out how

an app works using static analysis.

Status Severity

The vulnerability relates to only using the V1 signing scheme for the Android

application. V1 scheme solely validates ZIP file entries, making it susceptible

to exploitation where attackers can inject malicious code without invalidating

the APK.

RESILIENCE-3

The app implements anti-static analysis

mechanisms.

R3

Application Contains Debug Library

The Android application contains a debug library, which may expose sensitive

information and increase the overall attack surface.

Failed Low

Impact

An attacker could potentially leverage the presence of the debug library to

gain insights into the application's internal workings, posing an increased

security risk.

Remediation

Remove application debug libraries in the production version of the

application to minimize the risk of information exposure and enhance the

overall security.

Evidence

File: /data/local/tmp/artifacts/output/sources/unknown/DebugProbesKt.bin

File: /data/local/tmp/artifacts/output/resources/DebugProbesKt.bin

Sometimes pure static analysis is very difficult and time consuming so it

typically goes hand in hand with dynamic analysis. Observing and

manipulating an app during runtime makes it much easier to decipher its

behavior. This control aims to make it as difficult as possible to perform

dynamic analysis, as well as prevent dynamic instrumentation which could

allow an attacker to modify the code at runtime.

Status

Failed

Severity

Info

RESILIENCE-4

The app implements anti-dynamic analysis

techniques.

R4

Application Enables Debugging within the Android Manifest

The Android application enables debugging within the AndroidManifest,

potentially exposing sensitive information and increasing the attack surface.

Impact

Enabling debugging in the manifest may expose sensitive information and

pose a security risk, providing attackers with insights into the application's

internal workings.

Remediation

Disable debugging in the AndroidManifest.xml file before releasing the

application to enhance security and protect sensitive information.

Evidence

File: /data/local/tmp/artifacts/output/resources/AndroidManifest.xml

android:debuggable='true'

STORAGE
Mobile applications handle a wide variety of sensitive data, such as personally

identifiable information (PII), cryptographic material, secrets, and API keys, that often

need to be stored locally. This sensitive data may be stored in private locations, such as

the app's internal storage, or in public folders that are accessible by the user or other

apps installed on the device. However, sensitive data can also be unintentionally stored

or exposed to publicly accessible locations, typically as a side-effect of using certain

APIs or system capabilities such as backups or logs. This category is designed to help

developers ensure that any sensitive data intentionally stored by the app is properly

protected, regardless of the target location. It also covers unintentional leaks that can

occur due to improper use of APIs or system capabilities.

Applications handle sensitive data coming from many sources including the

user, the backend, system services or other applications on the device and

often need to store it locally. The storage locations may be private to the

application (e.g. its internal storage) or be public and therefore accessible by

the user or other installed applications (e.g. public folders such as

Downloads). This control ensures that any sensitive data that is intentionally

stored by the application is properly protected independently of the target

location.

Status Severity

STORAGE-1

The application securely stores sensitive data.

S1

Local Data Exposure: DNS Address Stored Insecurely

This test evaluates how the application handles DNS addresses within its

local data directory. Best practices dictate that sensitive details should be

protected adequately, utilizing encryption or obfuscation techniques. The

specific focus of this test is to determine whether the application has stored a

DNS address in plaintext, making it easily readable and accessible without

any additional processing.

Passed Low

Impact

Storing a DNS Address in a plaintext format within the local data directory

presents a significant risk. If these files are not adequately safeguarded,

anyone with device access could retrieve this DNS Address. This exposure

makes the associated information or services more susceptible to

unauthorized access and can provide valuable data to adversaries for

orchestrating follow-up attacks.

Remediation

Always encrypt sensitive values using industry-accepted algorithms before

storing them in the application's local data directory. Avoid storing

information in plaintext, especially if it's not required for the application's

functionality.

Status

Passed

Severity

Medium

Impact

Storing a user's GPS longitude in plaintext within the local application data

directory presents a significant risk. Anyone with device access could retrieve

the associated value if these files are not adequately safeguarded. This

exposure makes the associated information or services more susceptible to

unauthorized access and can provide valuable data to adversaries for

orchestrating follow-up attacks.

Local Data Exposure: GPS Longitude Stored Insecurely

This test evaluates how the application handles user GPS data, specifically

longitude coordinates within the local data directory. Best practices dictate

that sensitive information should be protected adequately, utilizing

encryption, obfuscation and platform-specific secure storage solutions. The

specific focus of this test is to determine whether the application has stored a

user's GPS longitude in plaintext, making it easily readable and accessible

without any additional processing.

Remediation

Always encrypt sensitive values using industry-accepted algorithms before

storing them in the application's local data directory. Avoid storing sensitive

values in plaintext, especially if it's not required for the application's

functionality.

Status

Passed

Severity

Medium

Impact

Storing a user's GPS latitude in plaintext within the local application data

directory presents a significant risk. Anyone with device access could retrieve

the associated value if these files are not adequately safeguarded. This

exposure makes the associated information or services more susceptible to

unauthorized access and can provide valuable data to adversaries for

orchestrating follow-up attacks.

Remediation

Always encrypt sensitive values using industry-accepted algorithms before

storing them in the application's local data directory. Avoid storing sensitive

values in plaintext, especially if it's not required for the application's

functionality.

Local Data Exposure: GPS Latitude Stored Insecurely

This test evaluates how the application handles user GPS data, specifically

latitude coordinates within the local data directory. Best practices dictate that

sensitive information should be protected adequately, utilizing encryption,

obfuscation and platform-specific secure storage solutions. The specific

focus of this test is to determine whether the application has stored a user's

GPS latitude in plaintext, making it easily readable and accessible without any

additional processing.

Local Data Exposure: Sensitive Values Stored Insecurely on

Device

Status

Failed

Severity

High

Impact

Storing sensitive values in plaintext within the local application data directory

presents a significant risk. If these files are not adequately safeguarded,

anyone with device access could retrieve the values. This exposure makes

the associated information or services more susceptible to unauthorized

access and can provide valuable data to adversaries for orchestrating follow-

up attacks.

Remediation

Always encrypt sensitive values using industry-accepted algorithms before

storing them in the application's local data directory. Avoid storing

information in plaintext, especially if it's not required for the application's

functionality.

Evidence

File: /data/data/com.corellium.cafe/databases/CUSTOMER_PAYMENT

1234567891011121

File: /data/data/com.corellium.cafe/shared_prefs/Customer Data.xml

<string name="First Name">David</string>

This test evaluates how the application handles the storage of the provided

sensitive values within the local data directory. Best practices dictate that

sensitive values should be protected adequately, utilizing encryption or

obfuscation techniques. The specific focus of this test is to determine

whether the application has stored any of the provided sensitive values in

plaintext, making it easily readable and accessible without any additional

processing.

File: /data/data/com.corellium.cafe/shared_prefs/Customer Data.xml

<string name="Last Name">Walker</string>

Status

Passed

Severity

Medium

Impact

Storing sensitive files within the local application data directory with global

write permissions presents a significant risk. Anyone with device access or

any device application could review and modify the contents of the files.

Remediation

Use the appropriate file permissions to grant access only to specific users or

processes that require it, preventing unauthorized modifications. Utilize

content providers if other applications are required to access data that is

stored by your application to avoid additional unauthorized access.

Local Data Exposure: Global Write Permissions

This test evaluates how the application utilizes global write permissions for

potentially sensitive files within the local data directory. Best practices dictate

that application files containing sensitive information should be protected

adequately, utilizing encryption, obfuscation and sufficient file permissions.

The specific focus of this test is to determine whether the application has

stored sensitive files with global write permissions, making the files easily

accessible outside the local data directory.

Local Data Exposure: Global Read Permissions

This test evaluates how the application utilizes global read permissions for

potentially sensitive files within the local data directory. Best practices dictate

that application files containing sensitive information should be protected

adequately, utilizing encryption, obfuscation and sufficient file permissions.

The specific focus of this test is to determine whether the application has

Status

Passed

Severity

Low

Impact

Storing sensitive files within the local application data directory with global

read permissions presents a significant risk. Anyone with device access or

any device application could review the contents of the files.

Remediation

Use the appropriate file permissions to grant access only to specific users or

processes that require it, preventing unauthorized access. Utilize content

providers if other applications are required to access data that is stored by

your application to avoid additional unauthorized access.

Status

Passed

Severity

Medium

Impact

Storing the device's Bluetooth MAC address in plaintext within the local

application data directory presents a significant risk. If these files are not

adequately safeguarded, anyone with device access could retrieve the

device's Bluetooth MAC address. This exposure makes the associated

stored sensitive files with global read permissions, making the files easily

readable outside the local data directory.

Local Data Exposure: Bluetooth MAC Address Stored

Insecurely

This test evaluates how the application handles the device's Bluetooth MAC

address within the local data directory. Best practices dictate that sensitive

values should be protected adequately, utilizing encryption or obfuscation

techniques. The specific focus of this test is to determine whether the

application has stored the device's Bluetooth MAC address in plaintext,

making it easily readable and accessible without any additional processing.

information or services more susceptible to unauthorized access and can

provide valuable data to adversaries for orchestrating follow-up attacks.

Remediation

Always encrypt sensitive values using industry-accepted algorithms before

storing them in the application's local data directory. Avoid storing

information in plaintext, especially if it's not required for the application's

functionality.

Status

Passed

Severity

Medium

Impact

Storing sensitive API keys in plaintext within the local application data

directory presents a significant risk. Anyone with device access could retrieve

the hardcoded API keys if these files are not adequately safeguarded. This

exposure makes the associated information or services more susceptible to

unauthorized access and can provide valuable data to adversaries for

orchestrating follow-up attacks.

Remediation

Always encrypt sensitive values using industry-accepted algorithms before

storing them in the application's local data directory. Avoid storing

information in plaintext, especially if it's not required for the application's

functionality.

Local Data Exposure: Insecure Hardcoded API Keys

This test evaluates how the application handles API keys within the local data

directory. Best practices dictate that sensitive API keys should be protected

adequately, utilizing encryption, obfuscation and platform-specific secure

storage solutions. The specific focus of this test is to determine whether the

application has stored sensitive API keys in plaintext, making it easily

readable and accessible without any additional processing.

Local Data Exposure: Insecure Hardcoded Passwords

Status

Passed

Severity

Medium

Impact

Storing sensitive password values in plaintext within the local application data

directory presents a significant risk. Anyone with device access could retrieve

the password values if these files are not adequately safeguarded. This

exposure makes the associated information or services more susceptible to

unauthorized access and can provide valuable data to adversaries for

orchestrating follow-up attacks.

Remediation

Always encrypt sensitive values using industry-accepted algorithms before

storing them in the application's local data directory. Avoid storing sensitive

values in plaintext, especially if it's not required for the application's

functionality.

Status Severity

This test evaluates how the application handles hardcoded passwords within

the local data directory. Best practices dictate that sensitive values, including

passwords, should be protected adequately, utilizing encryption, obfuscation

and platform-specific secure storage solutions. The specific focus of this test

is to determine whether the application has stored any password values

hardcoded in plaintext, making them easily readable and accessible without

any additional processing.

Local Data Exposure: WiFi MAC Address Stored Insecurely

This test evaluates how the application handles the device's WiFi MAC

Address within the local data directory. Best practices dictate that sensitive

information should be protected adequately, utilizing encryption, obfuscation

and platform-specific secure storage solutions. The specific focus of this test

is to determine whether the application has stored the device's WiFi MAC

Address in plaintext, making it easily readable and accessible without any

additional processing.

Passed Medium

Impact

Storing the device's WiFi MAC Address in plaintext within the local application

data directory presents a significant risk. Anyone with device access could

retrieve the associated value if these files are not adequately safeguarded.

This exposure makes the associated information or services more susceptible

to unauthorized access and can provide valuable data to adversaries for

orchestrating follow-up attacks.

Remediation

Always encrypt sensitive values using industry-accepted algorithms before

storing them in the application's local data directory. Avoid storing sensitive

values in plaintext, especially if it's not required for the application's

functionality.

Status

Passed

Severity

Low

Impact

Storing the device's WiFi IP Address in plaintext within the local application

data directory presents a significant risk. Anyone with device access could

retrieve the associated value if these files are not adequately safeguarded.

This exposure makes the associated information or services more susceptible

to unauthorized access and can provide valuable data to adversaries for

orchestrating follow-up attacks.

Local Data Exposure: WiFi IP Address Stored Insecurely

This test evaluates how the application handles the device's WiFi IP Address

within the local data directory. Best practices dictate that sensitive

information should be protected adequately, utilizing encryption, obfuscation

and platform-specific secure storage solutions. The specific focus of this test

is to determine whether the application has stored the device's WiFi IP

Address in plaintext, making it easily readable and accessible without any

additional processing.

Remediation

Always encrypt sensitive values using industry-accepted algorithms before

storing them in the application's local data directory. Avoid storing sensitive

values in plaintext, especially if it's not required for the application's

functionality.

Status

Passed

Severity

Medium

Impact

Storing the device's IMEI value in plaintext within the local application data

directory presents a significant risk. Anyone with device access could retrieve

the associated value if these files are not adequately safeguarded. This

exposure makes the associated information or services more susceptible to

unauthorized access and can provide valuable data to adversaries for

orchestrating follow-up attacks.

Remediation

Always encrypt sensitive values using industry-accepted algorithms before

storing them in the application's local data directory. Avoid storing sensitive

values in plaintext, especially if it's not required for the application's

functionality.

Local Data Exposure: Device IMEI Stored Insecurely

This test evaluates how the application handles the device's IMEI value within

the local data directory. Best practices dictate that sensitive information

should be protected adequately, utilizing encryption, obfuscation and

platform-specific secure storage solutions. The specific focus of this test is

to determine whether the application has stored the device's IMEI value in

plaintext, making it easily readable and accessible without any additional

processing.

Local Data Exposure: Android ID Stored Insecurely

Status

Passed

Severity

Medium

Impact

Storing the Android ID in plaintext within the local application data directory

presents a significant risk. Anyone with device access could retrieve the

associated value if these files are not adequately safeguarded. This exposure

makes the associated information or services more susceptible to

unauthorized access and can provide valuable data to adversaries for

orchestrating follow-up attacks.

Remediation

Always encrypt sensitive values using industry-accepted algorithms before

storing them in the application's local data directory. Avoid storing sensitive

values in plaintext, especially if it's not required for the application's

functionality.

There are cases when sensitive data is unintentionally stored or exposed to

publicly accessible locations; typically as a side-effect of using certain APIs,

system capabilities such as backups or logs. This control covers this kind of

unintentional leaks where the developer actually has a way to prevent it.

This test evaluates how the application handles the Android ID within the

local data directory. Best practices dictate that sensitive information should

be protected adequately, utilizing encryption, obfuscation and platform-

specific secure storage solutions. The specific focus of this test is to

determine whether the application has stored the Android ID in plaintext,

making it easily readable and accessible without any additional processing.

STORAGE-2

The app prevents leakage of sensitive data.

S2

Local Data Exposure: WiFi IP Address Logged Insecurely

This test evaluates how the application handles sensitive data within the

Android device logs. Best practices dictate that sensitive information should

Status

Passed

Severity

Low

Impact

Storing a device's WiFi IP Address within the Android device logs in plaintext

presents a significant risk. Anyone with device access could retrieve the logs,

and this exposure can provide valuable data to adversaries for orchestrating

follow-up attacks.

Remediation

Always encrypt log data using industry-accepted algorithms and ensure only

required data is being written to the device logs.

Status

Passed

Severity

Low

Impact

not be contained within the device logs, additionally, if data is required to be

used within the logs the data should be protected adequately, utilizing

encryption. The specific focus of this test is to determine whether the

application has stored the device's WiFi IP Address within logs in plaintext,

making it easily readable and accessible without any additional processing.

Local Data Exposure: Bluetooth MAC Address Logged

Insecurely

This test evaluates how the application handles sensitive data within the

Android device logs. Best practices dictate that sensitive information should

not be contained within the device logs, additionally, if data is required to be

used within the logs the data should be protected adequately, utilizing

encryption. The specific focus of this test is to determine whether the

application has stored a Bluetooth MAC Address within the logs in plaintext,

making it easily readable and accessible without any additional processing.

Storing a Bluetooth MAC Address within the Android device logs in plaintext

presents a significant risk. Anyone with device access could retrieve the logs,

and this exposure can provide valuable data to adversaries for orchestrating

follow-up attacks.

Remediation

Always encrypt log data using industry-accepted algorithms and ensure only

required data is being written to the device logs.

Status

Failed

Severity

Low

Impact

Capturing sensitive data within the device memory during runtime poses a

potential risk. If sensitive information remains in memory after its intended

use, it could be accessible to potential malware running on a device or

attackers who gain unauthorized access to the device. This exposure may

lead to unauthorized access to sensitive data and increase the likelihood of

data breaches or privacy violations.

Remediation

Ensure sensitive data is promptly cleared from memory after its intended use,

especially upon application termination. Implement secure coding practices

to prevent unintentional data retention in memory and consider using

encryption or secure data wiping techniques where applicable.

Evidence

Local Data Exposure: Sensitive Values Stored in Memory

This test evaluates how the application handles sensitive data within the

Android device memory during runtime. Best practices dictate that sensitive

information should not be stored in memory longer than necessary. The

specific focus of this test is to determine whether the application clears

sensitive data from memory promptly after its intended use.

Keyword: 1234567891011121

0x13328300
0x136f8260
0x6d68a91c21
0x6e48b02a5c

Keyword: David

0x13662d80
0x136cec48
0x6d68a91bef

Keyword: Walker

0x13662d48
0x136cc970
0x6d68a91c03

Keyword: 00000000-0000-0000-0000-000000000000

0x705c2df0

Status

Passed

Severity

Low

Local Data Exposure: Device IMEI Logged Insecurely

This test evaluates how the application handles sensitive data within the

Android device logs. Best practices dictate that sensitive information should

not be contained within the device logs, additionally, if data is required to be

used within the logs the data should be protected adequately, utilizing

encryption. The specific focus of this test is to determine whether the

application has stored the device's IMEI within logs in plaintext, making it

easily readable and accessible without any additional processing.

Impact

Storing a device's IMEI within the Android device logs in plaintext presents a

significant risk. Anyone with device access could retrieve the logs, and this

exposure can provide valuable data to adversaries for orchestrating follow-up

attacks.

Remediation

Always encrypt log data using industry-accepted algorithms and ensure only

required data is being written to the device logs.

Status

Failed

Severity

Medium

Impact

Enabling 'allowBackup' poses a business risk, as it permits extraction of

sensitive application data, undermining mobile security controls and data

confidentiality.

Remediation

Set the 'allowBackup' flag to 'false' within the AndroidManifest. If a backup is

necessary for the application, it is possible to define backup conditions

including utilizing encryption.

Evidence

File: /data/local/tmp/artifacts/output/resources/AndroidManifest.xml

android:allowBackup="true"

Local Data Exposure: Application Backups Enabled

This test evaluates if the 'allowbackup' flag is set to 'true' within the

AndroidManifest. The 'AllowBackup' flag can be used to backup the entire

application data directory exposing the contents to anyone with access.

Status

Passed

Severity

Low

Impact

Storing a device's build fingerprint within the Android device logs in plaintext

presents a significant risk. Anyone with device access could retrieve the logs,

and this exposure can provide valuable data to adversaries for orchestrating

follow-up attacks.

Remediation

Always encrypt log data using industry-accepted algorithms and ensure only

required data is being written to the device logs.

Status

Passed

Severity

Low

Local Data Exposure: Device Fingerprint Logged Insecurely

This test evaluates how the application handles sensitive data within the

Android device logs. Best practices dictate that sensitive information should

not be contained within the device logs, additionally, if data is required to be

used within the logs the data should be protected adequately, utilizing

encryption. The specific focus of this test is to determine whether the

application has stored the device's build fingerprint within logs in plaintext,

making it easily readable and accessible without any additional processing.

Local Data Exposure: WiFi MAC Address Logged Insecurely

This test evaluates how the application handles sensitive data within the

Android device logs. Best practices dictate that sensitive information should

not be contained within the device logs, additionally, if data is required to be

used within the logs the data should be protected adequately, utilizing

encryption. The specific focus of this test is to determine whether the

application has stored the WiFi MAC Address within logs in plaintext, making

it easily readable and accessible without any additional processing.

Impact

Storing a WiFi MAC Address within the Android device logs in plaintext

presents a significant risk. Anyone with device access could retrieve the logs,

and this exposure can provide valuable data to adversaries for orchestrating

follow-up attacks.

Remediation

Always encrypt log data using industry-accepted algorithms and ensure only

required data is being written to the device logs.

Status

Passed

Severity

Low

Impact

Storing GPS Coordinates within the Android device logs in plaintext presents

a significant risk. Anyone with device access could retrieve the logs, and this

exposure can provide valuable data to adversaries for orchestrating follow-up

attacks.

Remediation

Always encrypt log data using industry-accepted algorithms and ensure only

required data is being written to the device logs.

Local Data Exposure: GPS Longitude Logged Insecurely

This test evaluates how the application handles sensitive data within the

Android device logs. Best practices dictate that sensitive information should

not be contained within the device logs, additionally, if data is required to be

used within the logs the data should be protected adequately, utilizing

encryption. The specific focus of this test is to determine whether the

application has stored GPS Coordinates within the logs in plaintext, making it

easily readable and accessible without any additional processing.

Local Data Exposure: GPS Latitude Logged Insecurely

Status

Passed

Severity

Low

Impact

Storing GPS Coordinates within the Android device logs in plaintext presents

a significant risk. Anyone with device access could retrieve the logs, and this

exposure can provide valuable data to adversaries for orchestrating follow-up

attacks.

Remediation

Always encrypt log data using industry-accepted algorithms and ensure only

required data is being written to the device logs.

Status

Passed

Severity

High

Impact

This test evaluates how the application handles sensitive data within the

Android device logs. Best practices dictate that sensitive information should

not be contained within the device logs, additionally, if data is required to be

used within the logs the data should be protected adequately, utilizing

encryption. The specific focus of this test is to determine whether the

application has stored GPS Coordinates within the logs in plaintext, making it

easily readable and accessible without any additional processing.

Local Data Exposure: Sensitive Data Logged Insecurely

This test evaluates how the application handles sensitive data within the

Android device logs. Best practices dictate that sensitive information should

not be contained within the device logs, additionally, if data is required to be

used within the logs the data should be protected adequately, utilizing

encryption. The specific focus of this test is to determine whether the

application has stored any sensitive data provided within the logs in plaintext,

making it easily readable and accessible without any additional processing.

Storing sensitive data within the Android device logs in plaintext presents a

significant risk. Anyone with device access could retrieve the logs, and this

exposure can provide valuable data to adversaries for orchestrating follow-up

attacks.

Remediation

Always encrypt log data using industry-accepted algorithms and ensure only

required data is being written to the device logs.

Status

Passed

Severity

Low

Impact

Storing a DNS address within the Android device logs in plaintext presents a

significant risk. Anyone with device access could retrieve the logs, and this

exposure can provide valuable data to adversaries for orchestrating follow-up

attacks.

Remediation

Always encrypt log data using industry-accepted algorithms and ensure only

required data is being written to the device logs.

Local Data Exposure: DNS Address Logged Insecurely

This test evaluates how the application handles sensitive data within the

Android device logs. Best practices dictate that sensitive information should

not be contained within the device logs, additionally, if data is required to be

used within the logs the data should be protected adequately, utilizing

encryption. The specific focus of this test is to determine whether the

application has stored a DNS address within the logs in plaintext, making it

easily readable and accessible without any additional processing.

